(A)Lesson Context

BIG PICTURE of this UNIT:	- What are \& how \& why do we use exponential and logarithmic functions? proficiency with algebraic manipulations/calculations pertinent to exponential \& logarithmic functions proficiency with graphic representations of exponential \& logarithmic functions				
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading		
Previous math					
courses working					
with Exponent Laws					
and graphs of					
Exponential					
Relations				\quad	Reviewing the
:---					
exponent laws and					
working with rational					
exponents	\quad	Working with Exponential			
:---					
functions in modeling					
problems and as functions					
inverses)					

(B)Lesson Objectives

a. Review the basic Exponent Laws

(C) Exponent Laws

Definition of the terms in an exponential equation: $b^{x}=p$
$>b$ is the base (of the exponent)
$>x$ is the exponent
$>p$ is the power (the result of repeatedly multiplying b by itself, x number of times, or a base raised to an exponent)

Example: In $2^{3}=8$, the base is 2 , the exponent is 3 and the power is 8 . This can be read as the following:
> "Two cubed is 8."
$>$ "Two to the exponent 3 is 8 ."
> "Two to the 3 is 8. ."
> "Eight is the third power of 2."
$>$ BUT it CANNOT be read as: "Two to the power 3 is 8 ." (The power is NOT 3 - the power is 8 and the EXPONENT is $3!$)

EXPONENT LAWS:

1. Comparison of bases: If two powers have the same bases, then their exponents must be equal.
$>a^{x}=b^{x}$ if and only if $a=b(x \neq 0, a>0, b>0)$
2. Comparison of exponents: If two powers have the same exponents, then their bases must be equal.
$>$ exponents (with like bases): $b^{x}=b^{y}$ if and only if $x=y(b \neq-1,0,1)$
3. Multiplication of like bases: When multiplying (2 or more) like bases, keep the base and ADD the exponents.
$>b^{x} \cdot b^{y}=b^{x+y}$
4. Division of like bases: When dividing like bases, keep the base and SUBTRACT the exponents.
$>\frac{b^{x}}{b^{y}}=b^{x-y}$ (as long as $b \neq 0$)
5. Power of a product: If a single term is being raised to an exponent, then the exponent applies to each factor of the single term.
$>(a b)^{x}=a^{x} b^{x}$
$>$ Common mistake: $(a+b)^{x} \neq a^{x}+b^{x}$ (this is NOT TRUE because the base of $(a+b)$ is not a single term, but rather two terms)
6. Power of a quotient: If a fraction is being raised to an exponent, then the exponent applies to both the numerator and the denominator of the fraction.
$>\left(\left.\frac{a}{b}\right|^{x}=\frac{a^{x}}{b^{x}}, b \neq 0\left(\left.\frac{a}{b}\right|^{x}=\frac{a^{x}}{b^{x}}, b \neq 0\right.\right.$ (why can't b equal zero?)
7. Power of a power: When a power (such as b^{x}) is being raised to another (outer) exponent, the result is called a power of a power. In this case, keep the base and multiply exponents.
$>\left(b^{x}\right)^{y}=b^{x y}$
> Because the order of multiplication (commutativity) does not matter, these are equivalent: $\left(b^{x}\right)^{y}=b^{x y}$ and $\left(b^{y}\right)^{x}=b^{y x}$.
8. Exponent of zero: Any base raised to an exponent of zero (or the zeroeth power of any base) is ALWAYS equal to one.
$>b^{0}=1$
$>$ One exception is 0°; this is a non-unique or indeterminate value that arises often in calculus.
9. Negative exponent: When a base is raised to a negative exponent, reciprocate the base and raise the result to the positive exponent.
$>b^{-x}=\frac{1}{b^{x}}, b \neq 0$ (why can't b equal zero?)
10. Fractional exponent: When the exponent of a base is a fraction, the numerator of the fractional exponent acts as a regular exponent while the denominator of the fractional exponent indicates a root of the base.
$>b^{\frac{m}{n}}=\sqrt[n]{b^{m}}$
$>$ The symbol $\sqrt[n]{ }$ is called a radical or $n^{\text {th }}$-root symbol. The number n in the " V " is called the index (or type of root). If no number is specified, the type of root is automatically a SQUARE root. Otherwise, refer to the root as the " nth root", as in $\sqrt[8]{56}$ is the eighth root of 56 .
> You can either work out the base raised to the exponent first and then take the root: $b^{\frac{m}{n}}=\sqrt[n]{\left(b^{m}\right)}$ OR you can work out the $n^{\text {th }}$ root of the base first and then apply the exponent: $b^{\frac{m}{n}}=(\sqrt[n]{b})^{m}$.
> Advanced lingo: The base of the exponential expression $(\sqrt[n]{b})^{m}$ is $(\sqrt[n]{b})$, the exponent on the base is m and the $\left(m^{\text {th }}\right)$ power of the base is the result $(\sqrt[n]{b})^{m}$. What are the base, exponent and power of $\sqrt[n]{\left(b^{m}\right)}$?

Exercises:

1. Identify the parts of an exponential equation. State the base, the exponent and the power for each.
a) $(-4)^{3}=-64$
b) $2^{-5}=\frac{1}{32}$
c) $e^{2}=p$
d) $j^{0}=1$
e) $\sqrt[3]{n}=z$
f) $(\sqrt[3]{n})^{k}=y$
2. Use the exponent laws to write each expression with a single, simplified base.
a) $x^{4} \cdot x^{5} \cdot x^{9}$
c) $\frac{x^{12}}{x^{4}}$
e) $\frac{a}{a^{-5}}$
9) $\frac{\left(k^{a}\right)^{b} \cdot k^{3 a b}}{k^{7 a b}}$
b) $x^{4} \cdot x^{-5}$
d) $\frac{a^{10}}{a^{14}}$
f) $\left(9^{7}\right)^{20}$
h) $(\sqrt{x})^{6}$
3. Use the exponent laws to write each expression without any zero, negative or fractional exponents.
a) w^{-2}
b) $\frac{\left(a^{2}\right)^{3}}{a^{7}}$
c) $x^{\frac{4}{5}}$
d) $x^{-\frac{4}{5}}$
e) $\frac{\left(r^{3}\right)^{-1} \cdot r^{-5}}{\left(r^{-4}\right)^{2}}$
f) $\left(\frac{1}{2}+\frac{2}{3} \cdot \frac{3}{4}-\frac{4}{5} \div \frac{5}{6}\right)^{0}$
4. Rewrite the following expressions without a fractional exponent (where applicable) and simplify the (resulting) radicals.
a) $\sqrt{a b^{2} c^{3} d^{10} e^{21}}$
b) $\left(a^{7} b^{6} c^{5} d^{4} e^{3} f^{2}\right)^{\frac{1}{3}}$
5. Simplify the following expressions so that the final answers contain as few bases as possible but does not contain zero, negative or fractional exponents.
a) $x^{5} y^{7} z^{-10} \cdot\left(x^{2} y^{3} z^{4}\right)^{3}$
b) $\left(a^{2} b^{3} c^{-1}\right)^{3} \cdot\left(\frac{c^{5}}{a^{6} b^{4}}\right)$
c) $\left(\frac{\sqrt[5]{m^{7} n^{13} p^{4} q^{101}}}{m n^{3} p q^{18}}\right)^{-2}$
d) $\left(\left.\sqrt[6]{\frac{f^{4} g^{-2} h^{0}}{f^{-3} g}}\right|_{\mid} ^{12}\right.$
6. Simplify the following.
a) $x^{\frac{1}{2}}\left(x^{\frac{3}{2}}+2 x^{\frac{1}{2}}\right)$
b) $\left(\frac{3 x^{-2} y^{-4}}{y^{-3} x^{-7}}\right)^{2}$
c) $\left(\frac{9 x^{4} y^{4}}{x^{-2} y^{2}}\right)^{-\frac{1}{2}}$
d) $\left(\left(x^{-2} y^{3}\right)^{-2} \|\right)^{2}$
e) $\frac{\left(3 a^{-1}\right)^{2}}{3\left(a^{-1}\right)^{-2}}$
f) $\left.\left(\frac{-d^{10}}{-49 b^{6}}\right)\right)^{-0.5}$
g) $\sqrt[3]{128 x^{4} y^{2} z^{9}}$
h) $\left(a^{-x} b^{-x}\right)^{-1}$
i) $\left(a^{-x}+b^{-x}\right)^{-1}$
7. Evaluate (simplify as a number) the following.
a) -3^{2}
b) $(-3)^{2}$
c) -3^{-2}
d) $(-3)^{-2}$
e) $\left(3^{-2}+3^{-3}\right)^{-1}$
f) $8^{\frac{1}{3}}$
g) $8^{-\frac{1}{3}}$
h) $8^{-\frac{4}{3}}$
k) $\left(\frac{8}{27}\right)^{\frac{1}{3}}$
1) $\left(\frac{8}{27}\right)^{-\frac{2}{3}}$
i) $16^{\frac{3}{4}}$
j) $16^{-0.5}$
m) $2^{3^{2}}$
n) $\left(100^{\frac{1}{2}}-36^{\frac{1}{2}}\right)^{2}$
o) $\left(\frac{81}{5^{4}}\right)^{0.25}$

- Factor x^{16}
- Factorize 7^{8}. (no calculators)
- Factorize -6^{-9}. (no calculators)
- Factorize $\left(x^{6}-x^{-8}\right)$
- Expand $\left(x^{4}-y^{-2}\right)^{2}$
- Expand $\left(x^{4} y^{-2}\right)^{2}$
- Evaluate $(1+1 / x)^{x}$ if $x=\{5,15,30,90\}$

Expand and simplify
(i) $x^{-\frac{1}{2}}\left(x^{\frac{3}{2}}+2 x^{\frac{1}{2}}-3 x^{-\frac{1}{2}}\right)$
(ii) $\left(2^{x}+3\right)\left(2^{x+1}+1\right)$
(iii) $\left(3^{x}-3^{-x}\right)^{2}$
(a) Simplify $\frac{x^{-1}-y^{-1}}{x-y}$
(b) Is $\left(\frac{1}{x^{-1}}+\frac{1}{y^{-1}}\right)^{-1}=\frac{x+y}{x y}$
(c) Simplify $\frac{x^{-2}}{x^{-2}+y^{-2}}+\frac{y^{-2}}{x^{-2}-y^{-2}}$
(c) Simplify $\frac{x^{-1}+y^{-1}}{\mathrm{x}^{-1}}+\frac{x^{-1}-y^{-1}}{y^{-1}}$
ex 1. Simplify the following expressions:
(i) $\left(3 a^{2} b\right)\left(-2 a^{3} b^{2}\right)$
(ii) $\left(2 m^{3}\right)^{4}$
(iii) $\left(-4 p^{3} q^{2}\right)^{3}$
ex 2. Simplify $\left(6 x^{5} y^{3} / 8 y^{4}\right)^{2}$
ex 3. Simplify $\left(-6 x^{-2} y\right)\left(-9 x^{-5} y^{-2}\right) /\left(3 x^{2} y^{-4}\right)$ and express answer with positive exponents ex 4. Evaluate the following
(i) $(3 / 4)^{-2}$
(ii) $(-6)^{0} /\left(2^{-3}\right)$
(iii) $\left(2^{-4}+2^{-6}\right) /\left(2^{-3}\right)$

We will use the various laws of exponents to simplify expressions.
ex. $27^{1 / 3}$
ex. $\left(-32^{0.4}\right)$
ex. $81^{-3 / 4}$
ex. Evaluate $49^{1.5}+256^{-1 / 4}-27^{-2 / 3}$
ex. Evaluate $4^{1 / 2}+(-8)^{-1 / 3}-27^{4 / 3}$
ex. Evaluate $\sqrt[3]{8}+\sqrt[4]{16}-125^{-4 / 3}$
ex. Evaluate $(4 / 9)^{\frac{1}{2}}+(4 / 25)^{3 / 2}$

