Lesson 13 - Quadratic \& Polynomial Equations \& Complex Numbers

HL1 Math - Santowski

HL1 Math - Santowski

Fast Five

- STORY TIME.....
- http://mathforum.org/iohnandbetty/frame.htm

HL1 Math - Santowski

(A) Introduction to Complex Numbers

- Now solve the equation $x^{2}+1=0$
- The equation $x^{2}=-1$ has no roots because you cannot take the square root of a negative number.
- Long ago mathematicians decided that this was too restrictive.
- They did not like the idea of an equation having no solutions -- so they invented them.
- They proved to be very useful, even in practical subjects like engineering.

HL1 Math - Santowski

(A) Introduction to Complex Numbers

- Consider the general quadratic equation $a x^{2}+b x+c$ $=0$ where $a \neq 0$.
- The usual formula obtained by "completing the square" gives the solutions

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- If $b^{2} \geq 4 a c$ (or if $b^{2}-4 a c \geq 0$) we are "happy".
(6)

HL1 Math - Santowski
10/14/2014

(A) Introduction to Complex Numbers

- If $b^{2} \geq 4 a c$ (or if $b^{2}-4 a c \geq 0$) we are happy.
- If $b^{2}<4 a c$ (or if $b^{2}-4 a c<0$) then the number under the square root is negative and you would say that the equation has no solutions.
- In this case we write $b^{2}-4 a c=(-1)\left(4 a c-b^{2}\right)$ and $4 a c-b^{2}>0$. So, in an obvious formal sense

$$
x=\frac{-b \pm \sqrt{-1} \sqrt{4 a c-b^{2}}}{2 a}
$$

- and now the only `meaningless' part of the formula is $\sqrt{-1}$

(B) Using Complex Numbers Solving Equations

- Note the difference (in terms of the expected solutions) between the following 2 questions:
- Solve $x^{2}+2 x+5=0$ where $x \in R$
- Solve $x^{2}+2 x+5=0$ where $x \in C$

(B) Using Complex Numbers Solving Equations

- Solve the following quadratic equations where $x \in C$
- $x^{2}-2 x=-10$
- $3 x^{2}+3=2 x$
- $5 x=3 x^{2}+8$
- $x^{2}-4 x+29=0$
- Now verify your solutions algebraically!!!

HL1 Math - Santowski
10/14/2014
(A) Introduction to Complex Numbers

- So we might say that any quadratic equation either has "real" roots in the usual sense or else has roots of the form $p \pm q \sqrt{-1}$ where p and q belong to the real number system .
- The expressions $p \pm q \sqrt{-1}$ do not make any sense as real numbers, but there is nothing to stop us from playing around with them as symbols as $p+q i$ (but we will use $a+b i$)
- We call these numbers complex numbers; the special number i is called an imaginary number, even though i is just as "real" as the real numbers and complex numbers are probably simpler in many ways than real numbers.

HL1 Math - Santowsk

(B) Using Complex Numbers Solving Equations

- Solve the following quadratic equations where $x \in C$
- Simplify all solutions as much as possible
- Rewrite the quadratic in factored form
- $x^{2}-2 x=-10$
- $3 x^{2}+3=2 x$
- $5 x=3 x^{2}+8$
- $x^{2}-4 x+29=0$
- What would the "solutions" of these equations look like if $x \in R$

HL1 Math - Santowsk

(B) Using Complex Numbers Solving Equations

- One root of a quadratic equation is $2+3 i$
- (a) What is the other root?
- (b) What are the factors of the quadratic?
- (c) If the y-intercept of the quadratic is 6 , determine the equation in factored form and in standard form.

(B) Solving Polynomials if $\mathrm{x} \varepsilon \mathbf{C}$

- Let's expand polynomials to cubics \& quartics:
- Factor and solve $3-2 x^{2}-x^{4}=0$ if $x \varepsilon \mathbf{C}$
- Factor and solve $3 x^{3}-7 x^{2}+8 x-2=0$ if $x \varepsilon \mathbf{C}$
- Factor and solve $2 x^{3}+14 x-20=9 x^{2}-5$ if $x \in \mathbf{C}$
- Now write each polynomial as a product of its factors
- Explain the graphic significance of your solutions for x

(B) Solving if $\mathrm{x} \varepsilon \mathrm{C}-$ Graphic Connection

- With $P(x)=3-2 x^{2}-x^{4}$, we can now consider a graphic connection, given that
$P(x)=-\left(x^{2}+3\right)(x-1)(x+1)$
or given that
$P(x)=-(x-1)(x+1)(x-i \sqrt{3})(x+i \sqrt{3})$

(D) Using the FTA

- Write an equation of a polynomial whose roots are x
$=1, x=2$ and $x=3 / 4$
- Write the equation of a polynomial whose graph is given:
- Write the equation of the polynomial whose roots are $1,-2,-4, \& 6$ and a point (-1 , -84)
- Write the equation of a polynomial whose roots are x $=2$ (with a multiplicity of 2) as well as $x=-1 \pm \sqrt{2}$

(B) Solving if $x \varepsilon C-$ Solution to Ex 1

- Factor and solve $3-2 x^{2}-x^{4}=0$ if $x \varepsilon \mathbf{C}$ and then write each polynomial as a product of its factors
- Solutions are $x= \pm 1$ and $x= \pm \boldsymbol{i} \sqrt{3}$
- So rewriting the polynomial in factored form (over the reals) is $\mathrm{P}(\mathrm{x})=-\left(\mathrm{x}^{2}+3\right)(\mathrm{x}-1)(\mathrm{x}+1)$ and over the complex
numbers: $P(x)=-(x-1)(x+1)(x-i \sqrt{3})(x+i \sqrt{3})$

(C) Fundamental Theorem of Algebra

- The fundamental theorem of algebra can be stated in many ways:
- (a) If $P(x)$ is a polynomial of degree n then $P(x)$ will have exactly n zeroes (real or complex), some of which may repeat.
- (b) Every polynomial function of degree $n \geq 1$ has exactly n complex zeroes, counting multiplicities
- (c) If $\mathrm{P}(\mathrm{x})$ has a nonreal root, $a+b i$, where $\mathrm{b} \neq 0$, then its conjugate, a-bi is also a root
- (d) Every polynomial can be factored (over the real numbers) into a product of linear factors and irreducible quadratic factors
- What does it all mean \rightarrow we can solve EVERY polynomial (it may be REALLY difficult, but it can be done!)

HL1 Math - Santowski

(D) Using the FTA

- Given that $1-3 i$ is a root of $x^{4}-4 x^{3}+13 x^{2}-18 x-10$ $=0$, find the remaining roots.
- Write an equation of a third degree polynomial whose given roots are 1 and i. Additionally, the polynomial passes through $(0,5)$
- Write the equation of a quartic wherein you know that one root is $2-i$ and that the root $x=3$ has a multiplicity of 2.

[^0]10/14/2014

(E) Further Examples

- The equation $x^{3}-3 x^{2}-10 x+24=0$ has roots of $2, h$, and k. Determine a quadratic equation whose roots are $h-k$ and $h k$.
- The $5^{\text {th }}$ degree polynomial, $f(x)$, is divisible by x^{3} and $f(x)-1$ is divisible by $(x-1)^{3}$. Find $f(x)$.
- Find the polynomial $p(x)$ with integer coefficients such that one solution of the equation $p(x)=0$ is $1+\sqrt{2}+\sqrt{3}$.

(E) Further Examples

- Start with the linear polynomial: $y=-3 x+9$. The $x-$ coefficient, the root and the intercept are $-3,3$ and 9 respectively, and these are in arithmetic progression. Are there any other linear polynomials that enjoy this property?
- What about quadratic polynomials? That is, if the polynomial $y=a x^{2}+b x+c$ has roots r_{1} and r_{2} can a, r_{1}, b, r_{2} and c be in arithmetic progression?

[^0]: HL1 Math - Santowski

