

Lesson Objectives

- Mastery of the factoring of polynomials using the algebraic processes of synthetic division
- Mastery of the algebraic processes of solving polynomial equations by factoring (Factor Theorem \& Rational Root Theorem)
- Mastery of the algebraic processes of solving polynomial inequalities by factoring (Factor Theorem \& Rational Root Theorem)
H.1. Math - Santowslit ${ }^{2}$

(A) FAST FIVE

-Factor $\mathrm{x}^{2}-\mathrm{x}-2$
-Explain what is meant by the term "factor of a polynomial" -Explain what is meant by the term "root of a polynomial"
-Divide $x^{3}-x^{2}-14 x+24$ by $x-2$
-Divide $x^{3}-x^{2}-14 x+24$ by $x+3$
$10^{3} 13 / 1$

$$
\text { (B) Review - Graph of } P(x)=x^{3}-x^{2}-14 x+24
$$

- Divide $x^{3}-x^{2}-14 x+24$ by $x-2$ and notice the remainder
- Then evaluate $P(2)$. What must be true about $(x-2)$?
- Divide $x^{3}-x^{2}-14 x+24$ by $x+3$ and notice the remainder
- Then evaluate $P(-3)$. What must be true about $(x+3)$?
- Now graph $f(x)=x^{3}-x^{2}-14 x+24$ and see what happens at $x=2$ and $x=-3$
- So our conclusion is: $x-2$ is a factor of $x^{3}-x^{2}-14 x+24$, whereas $x+3$ is not a factor of $x^{3}-x^{2}-14 x+24$

(C) The Factor Theorem

We can use the ideas developed in the review to help us to draw a connection between the polynomial, its factors, and its roots.

- What we have seen in our review are the key ideas of the Factor Theorem - in that if we know a root of an equation, we know a actor and the converse, that if we know a factor, we know a root
- The Factor Theorem is stated as follows: $x-a$ is a factor of $f(x)$ if and only if $f(a)=0$. To expand upon this idea, we can add that $a x-b$ is a factor of $f(x)$ if and only if $f(b / a)=0$.
- Working with polynomials, $(x+1)$ is a factor of $x^{2}+2 x+1$ remainder and when you substitute $x=-1$ into $x^{2}+2 x+1$, you get 0

```
(D) Examples
| ex 1. Show that x-2 is a factor of }\mp@subsup{x}{}{3}-7x+
- ex. 2. Show that -2 is a root of 2x}+\mp@subsup{x}{}{3}+2,2x+8
    0. Find the other roots of the equation. (Show
    with GDC)
    - ex. 3. Factor }\mp@subsup{x}{}{3}+1\mathrm{ completely
    - ex.4. Factor }\mp@subsup{x}{}{3}-1\mathrm{ completely
    | ex.4. Is }x-\sqrt{}{2}\mathrm{ a factor of }\mp@subsup{x}{}{4}-5\mp@subsup{x}{}{2}+6
    10913/14 HLL Math - Santowski m
```

${ }_{10} / \beta_{/ / 4}$

- Ex $1 \rightarrow$ Factor $P(x)=2 x^{3}-9 x^{2}+7 x+6 \&$ then solve $P(x)=0$
- Hence, sketch $y=|P(x)|$
- Solve $2 x^{3}-9 x^{2}+7 x+6<0$
- Ex $2 \rightarrow$ Factor $3 x^{3}-7 x^{2}+8 x-2 \&$ then solve $P(x)=0$
- Hence, sketch $y=|P(x)|$
- Solve $3 x^{3}-7 x^{2}+8 x \geq 2$
- Ex $3 \rightarrow$ Factor \& solve $f(x)=3 x^{3}+x^{2}-22 x-24$
- Hence, sketch $y=|P(x)|$
- Solve $-3 x^{3} \leq x^{2}-22 x-24$

(D) Further Examples: Systems

- ex. 1 Solve $2 x^{3}-9 x^{2}-8 x=-15$ and then show on a GDC
- ie. Solve the system $\left\{\begin{array}{c}y=2 x^{3}-9 x^{2}-8 x \\ y=-15\end{array}\right.$
- ex 2. Solve $2 x^{3}+14 x-20=9 x^{2}-5$ and then show on a GDC
- ie. Solve the system $\left\{\begin{array}{c}y=2 x^{3}+14 x-20 \\ y=9 x^{2}-5\end{array}\right.$

0/13/14
HL1 Math - Santowski

(D) Further Examples - Solutions

- Solve $2 x^{3}-9 x^{2}-8 x=-15$ and then show on a GDC
- Now graph both
- $g(x)=2 x^{3}-9 x^{2}-8 x$ and then $h(x)=-15$ and find intersection
- OR graph:
- $f(x)=2 x^{3}-9 x^{2}-8 x+15$

10/13/14
H. 1 Math - Santowsk

12

(D) Further Examples - Quartics

- Solve $x^{4}-x^{3}-7 x^{2}+13 x-6=0$
- Hence solve $x^{4}-x^{3}+13 x \geq 6+7 x^{2}$
- Hence, sketch a graph of $P(x)=\left|x^{4}-x^{3}-7 x^{2}+13 x-6\right|$
- Hence, sketch a graph of the reciprocal of $x^{4}-x^{3}-7 x^{2}+$ $13 x-6$

10/A§/14
H.L. Math - Santowski

(D) Further Examples - Solutions

- Solve $x^{4}-x^{3}-7 x^{2}+13 x-6=0$
- $P(x)=0=(x-1)^{2}(x+3)(x-2)$
- Solve $x^{4}-x^{3}-7 x^{2}+13 x-6 \geq 0$
- So $P(x) \geq 0$ on $[-\infty,-3)$ or $(2, \infty)$

(E) Solving \& Factoring on the TI-84

- Solve $2 x^{3}-9 x^{2}-8 x=-15$ turn it into a "root" question \rightarrow i.e Solve $\mathrm{P}(\mathrm{x})=0 \rightarrow$ Solve $0=2 \mathrm{x}^{3}-9 \mathrm{x}^{2}-8 \mathrm{x}+15$

(E) Solving \& Factoring on the TI-84
- Factor \& Solve the following:

- $0=2 x^{3}-9 x^{2}+7 x+6 \rightarrow$ roots at $x=-0.5,2,3 \rightarrow$ would imply factors of $(x-2),(x-3)$ and $(x+1 / 2) \rightarrow P(x)=2(x+1 / 2)(x-2)(x-3)$
- So when factored $P(x)=(2 x+1)(x-2)(x-3)$

10/13/14
H.1. Marth - Santowski

(F) Multiplicity of Roots

- Factor the following polynomials:
- $P(x)=x^{2}-2 x-15$
- $P(x)=x^{2}-14 x+49$
- $P(x)=x^{3}+3 x^{2}+3 x+1$
- Now solve each polynomial equation, $P(x)=0$
- Solve $0=5(x+1)^{2}(x-2)^{3}$
- Solve $0=x^{4}(x-3)^{2}(x+5)$
- Solve $0=(x+1)^{3}(x-1)^{2}(x-5)(x+4)$

10/13/14
Math 2 Honors - Santowski ${ }^{19}$

(F) Multiplicity of Roots

- If r is a zero of a polynomial and the exponent on the factor that produced the root is $k,(\mathrm{x}-r)^{\mathrm{k}}$, then we say that r has multiplicity of k. Zeroes with a multiplicity of 1 are often called simple zeroes.
- For example, the polynomial $x^{2}-14 x+49$ will have one zero, $x=7$, and its multiplicity is 2 . In some way we can think of this zero as occurring twice in the list of all zeroes since we could write the polynomial as, $(x-7)^{2}=(x-7)(x-7)$
- Written this way the term $(x-7)$ shows up twice and each term gives the same zero, $x=7$.
- Saying that the multiplicity of a zero is k is just a shorthand to acknowledge that the zero will occur k times in the list of all zeroes.
$-$
10/13/14
Math 2 Honors - Santowski ${ }^{20}$

Even Multiplicity
Odd Multiplicity

10/13/1 Math 2 Honors - Santowski

(G) Examples - Applications

- ex 5. You have a sheet of paper 30 cm long by 20 cm wide. You cut out the 4 corners as squares and then fold the remaining four sides to make an open top box.
- (a) Find the equation that represents the formula for the volume of the box.
- (b) Find the volume if the squares cut out were each 2 cm by 2 cm .
- (c) What are the dimensions of the squares that need to be removed if the volume is to be $1008 \mathrm{~cm}^{3}$?
${ }_{10275 / 14}$
HL.1 Math - Santowski

(G) Examples - Applications

- The equation $p(m)=6 m^{5}-15 m^{4}-10 m^{3}+30 m^{2}+10$ relates the production level, p, in thousands of units as a function of the number of months of labour since October, m.
- Use graphing technology to graph the function and determine the following:
- maximums and minimums. Interpret in context
- Intervals of increase and decrease. Interpret
- Explain why it might be realistic to restrict the domain. Explain and justify a domain restriction
- Would $0 \leq m \leq 3$ be a realistic domain restriction?
- Find when the production level is 15,500 units (try this one algebraically as well)
$100^{2 f} / 14$ H.1. Math - Santowski $\quad 24$

