

Skills Preview

Lesson Objectives

- Given the graph of a function $y=f(x)$, be able to graph the transformed function $y=a f(b(x+c))+d$
- Provide a complete analysis of the following types of graphs: quadratic, root, cubic, reciprocal, exponential
- Given the equation of $y=f(x)$, be able to determine the new equation, new domain, and sketch the transformed function $y=a f(b(c+x))+d$

		Parent Func	ions	
	Base Function	Features	Example	
	$f(x)=x^{2}$	Vertex \& axis of symmetry, pts ($\pm 2,4$)	$\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}+6 \mathrm{x}-5$	
	$\mathrm{f}(\mathrm{x})={ }^{\text {x }}$	"vertex", pts of (4,2)	$\mathrm{f}(\mathrm{x})=-\sqrt{ }(3-\mathrm{x})$	
	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}$	Max \& mins	$\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-12 \mathrm{x}$	
	$\mathrm{f}(\mathrm{x})=1 / \mathrm{x}$	Asymptotes and pts (1,1) and ($-1,-1$)	$f(\mathrm{x})=3-1 /(\mathrm{x}+2)$	
	$f(\mathrm{x})=\|\mathrm{x}\|$	"vertex" and ($\pm 1,1$)	$f(\mathrm{x})=2\|\mathrm{x}-3\|$	
	$\mathrm{f}(\mathrm{x})=2^{\mathrm{x}}$	Asymptote, pt (0,1)	$f(\mathrm{x})=-2^{\text {x-4 }}+3$	
	Math HL1 - Santowski			9/28/14

(A) Working with Parabolas

- The key features of a parabola that will be helpful in studying transformations \rightarrow you should already know the vertex and the axis of symmetry as well as being able to work with any key order pairs (i.e. $(1,1)$ or $(2,4))$
- And since the vertex is a key point, you should be able to connect the vertex form and the process of completing the square to identifying transformations of $y=x^{2}$.

(B) Working with Root Functions
- The key features of a "sideways" parabola or a root function that will be helpful in studying transformations \rightarrow the
"vertex" as well as being able to work with any key order pairs (i.e. $(1,1)$ or $(4,2))$
- So work with the function $f(x)=-\sqrt{3-x}$
- PREDICT the transformations of $f(x)=V$ and sketch, labeling key points

Math HL1 - Santowski
9/28/14
(B) Working with Root Functions

(C) Working with Rational Functions

- The key features of a rational function that will be helpful in studying transformations \rightarrow you should already know the asymptotes as well as being able to work with any key order pairs (i.e. $(1,1)$ or $(-1,-1))$
- So work with the function $f(x)=3-\frac{1}{x+2}$
- PREDICT the transformations of $f(x)=1 / x$
(11) Math HL1 - Santowski

(C) Working with Rational Functions

- Working with $g(x)=1 / \mathrm{x}$ and $f(x)=3-\frac{1}{x+2}$
- (a) Explain how $f(x)$ must be transformed to get back to $g(x)$
- (b) Sketch $y=f(x)$, showing three key points on $f(x)$
- (c) Sketch $y=f^{-1}(x)$, showing key features of the inverse function
- (d) Graph $y=[1 / g(x)]^{2}$ on your TI-84 on the domain of $(-5,5]$ \& identify the range, max/mins, \& intercepts \& asymptotes
(12)

Math HL1 - Santowski

(D) Working with Cubics $f(x)=x^{3}$

- The key features of a cubic function that will be helpful in studying transformations \rightarrow you should know the maximums \& minimum (extrema, turning points) and roots as well as being able to work with any key order pairs (i.e. $(1,1)$ or $(-1,-1)$)

(D) Working with Cubics $f(x)=x^{3}$
- If $f(x)=x^{3}-12 x$,
- (a) Show that $f(x)$ is an even function. Find zeroes \& sketch $f(x)$
- (b) Graph $g(x)=1 / 2 f(x-2)+4$
- (c) Determine the cubic equation for $y=g(x)$
- (d) Solve $\mathrm{g}(\mathrm{x})=0$
- (e) CA: Graph and analyze $y=\frac{g(x)}{x^{2}-4}$ on xER:
(find asymptotes, roots, intervals of increase/decrease)
Math HL1 - Santowski
(D) Working with Cubics $f(x)=x^{3}$
- So if $f(x)=x^{3}-12 x$, then graph $g(x)=1 / 2 f(x-2)+4$

Key Features of $f(x)=2^{x}$

- The key features of an exponential function that will be helpful in studying transformations \rightarrow you should know the asymptote and y -intercept as well as being able to work with any key order pairs \rightarrow i.e. $(1,2)$ or $(-1,1 / 2)$ or $(2,4)$
- So work with the function $\mathrm{y}=-2^{\mathrm{x}-4}+3$
- PREDICT the transformations of $\mathrm{f}(\mathrm{x})=2^{\mathrm{x}}$

Culminating Assessment

- Of course, you may have the skill set from your previous math studies to demonstrate the required skills \& concepts
- Complete the following calculator inactive "quiz"

Q1

- Sketch the graph of $f(x)=1 / x$ and then sketch a graph of $g(x)=-2 f(3 x-6)+4$ and provide a complete functional analysis of $\mathrm{g}(\mathrm{x})$ (Domain, range, asymptotes, intercepts.)
- Evaluate $\mathrm{g}(19 / 9)$

Q2

- Given the following graph of $\mathrm{h}(\mathrm{x})$, identify the transformations of $h(x)$ and then graph $\mathrm{k}(\mathrm{x})$ if $\mathrm{k}(\mathrm{x})$ is defined as follows:
- (a) $k(x)+2=-2 h(0.5(x+1))$
- (b) $4 \mathrm{k}(\mathrm{x})+8=\mathrm{h}(4-0.5 \mathrm{x})$
- Show a detailed "sample calculation" of how you transformed the point $A(2,1)$ onto its image point

- Evaluate k(-1)

