

Faster Five - Skills Preview

- For the following pairs of functions
- (a) Determine fog (x)
- (b) Determine gof (x)
- (c) Graph the original two functions in a square view window \& make
observations about the graph \rightarrow then relate these observations back to the composition result

Lesson Objectives

- Find the inverse of a function from numeric/tabular, graphic or algebraic data
- Compose a function with its inverse to develop the identity function
- Understand inverses as transformations

9/20/14
HLL Math - Santowski

The BIG Picture
QUESTIONS??
- Are all functions invertible?
- Do function inverses "do the same thing" as our
additive/multiplicative inverses?
- Why "invert" a function in the first place?
miser/4

(A) Inverses - The Concept

- Let's back to our input $\boldsymbol{\rightarrow}$ output notion for functions.
- If functions are nothing more than input/output operators, then the concept of an inverse has us considering how to go in reverse $\boldsymbol{\rightarrow}$ going from the output back to the input

9/20/14 HL. 1 Math - Santowski

(A) Inverses - The Concept

- If the elements of the ordered pairs or mappings of a function are reversed, the resulting set of ordered pairs or mappings are referred to as the INVERSE.
- Since we are REVERSING the elements \rightarrow another point worth noting: the domain of the original function now becomes the range of the inverse; likewise, the range of the original becomes the domain of the inverse.

[^0]HL. 1 Math - Santowski

(B) Notation of the Inverses
- If the inverse relation IS a function, then the
notation used for these inverses is $f^{-1}(x)$.
\quad IMPORTANT NOTE:
$\quad f^{-1}(x)$ does not mean $(f(x))^{-1}$ or $1 / f(x)$.

(C) Examples		
- Determine the equation for the inverse of the following functions. Draw both graphs and find the D and R of each.	- And some rational functions (5) $y=\frac{2}{3 x-9}$	
- (1) $y=4 x-9$ - (2) $y=2 x^{2}+4$ but	(6) $y=\frac{2 x-1}{3 x-9}$	
- (3) $y=2-\sqrt{x+3}$	- (7) $\mathrm{y}=\|\mathrm{x}\|$	
$9 / 20 / 44$	smomexid	${ }^{10}$

(C) Examples

(C) Examples

- Given the function of $\mathrm{y}=\mathrm{f}(\mathrm{x})$, determine
- (a) the domain and range of the relation
- (b) the domain and range of the inverse relation
- (c) Is the inverse relation a function?
- (d) Evaluate fof ${ }^{-1}$ (8)
- (e) Evaluate f(4)
- (f) Solve $f(x)=1 / 2$
- (g) Evaluate $f^{-1}(1)$
- (h) Solve $f^{-1}(x)=7$

9/20/14
HL.1 Math - Santowski

(C) Examples

- Given the function of , determine $f(x)=1-\sqrt{x-2}$
- (a) the domain and range of the relation
- (b) the domain and range of the inverse relation
- (c) Determine the equation of the inverse relation
- (d) Is the inverse relation a function?
- (e) Evaluate fof ${ }^{-1}(5)$
- (f) Evaluate f(6)
- (g) Solve $f(x)=-2$
- (h) Evaluate $f^{-1}(-3)$
- (i) Solve $f^{-1}(x)=11$

9/20/14 HL1 Math - Santowski

(D) Existence of Inverses

- A function, f, has an inverse, f^{1}, if and only if f is one to one.
- So how do we "test" if a function is one to one?
- Let a be any real number, so if $x=a$, then $y=f(a)$
- Let b be any real number, so if $x=b$, then $y=f(b)$
- Recall that is $f(x)$ is one to one, then one output is produced by one input AND ALSO one input produces one output
- So, if our two outputs ($\mathrm{f}(\mathrm{a}) \& \mathrm{f}(\mathrm{b})$) are equal AND if our two inputs are NOT the same, then our function is NOT one to one

- Let $f(x)=2+\sqrt{x}$
- Let $f(x)=2+x^{2}$
- So $f(a)=2+\sqrt{ } a$
- So $f(a)=2+a^{2}$
- And $f(b)=2+\sqrt{ } b$
- If $f(a)=f(b)$
- Then $2+\sqrt{ } \mathrm{a}=2+\sqrt{ } \mathrm{b}$
- And $f(b)=2+b^{2}$
- If $f(a)=f(b)$
- So $a^{2}=b^{2}$
- So $\sqrt{ } a=\sqrt{ }$ b
- Now squar
- Meaning that $\mathrm{a}=\mathrm{b}$
- $\sqrt{ } \mathrm{a}^{2}=\sqrt{ } \mathrm{b}^{2}$
- $S o|a|=|b|$
- so the only way to get the two same output values is to have the two input values to be identical, meaning you MUST be one to one. can be produced by different input one. \quad values \rightarrow NOT one to one!!
(D) Existence of Inverses

4. Show that $f(x)=\frac{x}{\sqrt{x^{2}+1}}, x \in \mathbb{R}$ is a one-to-one function, hence find its inverse, f^{-1}.

| HL. Math - Santowski | 16 |
| :--- | :--- | :--- |

(D) Exponential Functions

- Graph the exponential function $y=e^{x}+1$ using DESMOS
- Now graph the inverse using DESMOS as well $\rightarrow \mathrm{x}=\mathrm{e}^{\mathrm{y}}+1$
- Explore the data tables of each function \& the graphs \& notice the connections
- Now graph the function $y=\ln (x-1)$ and compare it to the graph of $x-1=e^{y}$
- Explain the point to the natural log function

(D) Exponential Functions
■ Find the inverses of the following functions:
(a) $y=e^{2 x}$ (b) $y=e^{x+2}$ (c) $y=2 e^{x}$ (d) $y=e^{x}+2$ (e) $y=\ln (x+3)-1$ (f) $y=4 \ln (2 x)$
nutil lat. Smanomsi

(E) Composing with Inverses

- How can we use this observation?
- Determine the equation of the inverse of

$$
f(x)=\frac{5}{x-3}
$$

- Verify that your equation for the inverse IS correct (HINT: Composition)

[^0]: 9/20/14

