Lesson 100: The Normal Distribution

HL Math - Santowski

Objectives

- Introduce the Normal Distribution
- Properties of the Standard Normal Distribution
- Introduce the Central Limit Theorem

Normal Distributions

- A random variable \mathbf{X} with mean μ and standard deviation σ is normally distributed if its probability density function is given by

$$
\begin{aligned}
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(1 / 2)\left(\frac{x-\mu}{\sigma}\right)^{2}} \quad-\infty \leq x \leq \infty \\
& \text { where } \pi=3.14159 \ldots \text { and } e=2.71828 \ldots
\end{aligned}
$$

Normal Probability Distributions

\square The expected value (also called the mean) $\mathrm{E}(\mathrm{X})$ (or μ) can be any number
\square The standard deviation σ can be any nonnegative number
\square The total area under every normal curve is 1

- There are infinitely many normal distributions

Total area $=1$; symmetric around μ

The effects of μ and σ

How does the standard deviation affect the shape of $f(x)$?

How does the expected value affect the location of $f(x)$?

A family of bell-shaped curves that differ only in their means and standard deviations.
$\mu=$ the mean of the distribution
$\sigma=$ the standard deviation

Probability = area under the density curve
$\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}=$ area under the density curve between a and b.

Probability $=$ area under the density curve
$\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}=$ area under the density curve between ${ }_{6}^{9}$ and 8

Probability $=$ area under the density curve
$\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b}=$ area under the density curve between $\underset{6}{8}$ and

Probabilities: area under graph of $f(x)$

$\mathrm{P}(\mathrm{a} \leq \mathrm{X} \leq \mathrm{b})=$ area under the density curve between a and b .

$$
P(X=a)=0
$$

$$
\mathrm{P}(\mathrm{a} \leq \mathrm{x} \leq \mathrm{b})=\mathrm{P}(\mathrm{a}<\mathrm{x}<\mathrm{b})
$$

The Normal Distribution: as mathematical function (pdf)

Note constants:

$$
\begin{aligned}
& \pi=3.14159 \\
& e=2.71828
\end{aligned}
$$

This is a bell shaped curve with different centers and spreads depending on μ and σ

The Normal PDF

It's a probability function, so no matter what the values of μ and σ, must integrate to 1 !

$$
\int_{-\infty}^{+\infty} \frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=1
$$

Normal distribution is detined by

 its mean and standard dev.$\mathrm{E}(\mathrm{X})=\mu=$

$\operatorname{Var}(\mathrm{X})=\sigma^{2}=$

$$
\left.\int_{-\infty}^{+\infty} x^{2} \frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x\right)-\mu^{2}
$$

Standard Deviation(X)= σ

**The beauty of the normal curve:

No matter what μ and σ are, the area between $\mu-\sigma$ and $\mu+\sigma$ is about 68%; the area between $\mu-2 \sigma$ and $\mu+2 \sigma$ is about 95%; and the area between $\mu-3 \sigma$ and $\mu+3 \sigma$ is about 99.7%. Almost all values fall within 3 standard deviations.

68-95-99.7 Rule

68-95-99.7 Rule in Math terms...

$$
\begin{aligned}
& \int_{\mu-\sigma}^{\mu+\sigma} \frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=.68 \\
& \int_{\mu-2 \sigma}^{\mu+2 \sigma} \frac{1}{\sigma \sqrt{2 \pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=.95 \\
& \int_{\mu-3 \sigma}^{\mu+3 \sigma} \frac{1}{\sigma \sqrt{2 \pi}} \bullet e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}} d x=.997
\end{aligned}
$$

Standardizing

- Suppose $\mathrm{X} \sim \mathrm{N}(\mu, \sigma)$
\square Form a new random variable by subtracting the mean μ from X and dividing by the standard deviation σ :

$$
(\mathrm{X}-\mu) / \sigma
$$

\square This process is called standardizing the random variable X .

Standardizing (cont.)

$\square(\mathrm{X}-\mu) / \sigma$ is also a normal random variable; we will denote it by Z :

$$
\mathrm{Z}=(\mathrm{X}-\mu) / \sigma
$$

$\square \mathrm{Z}$ has mean 0 and standard deviation 1: $\mathrm{E}(\mathrm{Z})=\mu=0 ; \mathrm{SD}(\mathrm{Z})=\sigma=1$.

$$
\mathrm{Z} \sim \mathrm{~N}(0,1)
$$

- The probability distribution of Z is called the standard normal distribution.

Pdf of a standard normal rv

\square A normal random variable x has the following pdf:

$$
\begin{aligned}
& f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{1}{2}\left[\frac{(x-\mu)^{2}}{\sigma^{2}}\right]},-\infty<x<\infty \\
& Z \sim N(0,1) \text { substitute } 0 \text { for } \mu \text { and } 1 \text { for } \sigma \\
& p d f \text { for the standard normal rv becomes }
\end{aligned}
$$

$$
\phi(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} z^{2}},-\infty<z<\infty
$$

Standard Normal Distribution

$\mathrm{Z}=$ standard normal random variable
$\mu=0$ and $\sigma=1$

Important Properties of Z

\#1. The standard normal curve is symmetric around the mean 0
\#2. The total area under the curve is 1 ; so (from \#1) the area to the left of 0 is $1 / 2$, and the area to the right of 0 is $1 / 2$

Finding Normal Percentiles by Hand (cont.)

\square Table Z is the standard Normal table. We have to convert our data to z -scores before using the table.
\square The figure shows us how to find the area to the left when we have a z-score of 1.80:

Areas Under the Z Curve: Using

 the Table $\quad \mathbf{P}(\mathbf{0} \leq \mathbf{Z} \leq \mathbf{1})=.8413-.5$ $=.3413$
.3413
 0

Standard normal probabilities have been
 calculated and are provided in table Z

The tabulated probabilities correspond to the area between $Z=-\infty$ and some z_{0}

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
			:			:				:
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
			:			:				:
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
			:			:				:

- Example - continued $\mathrm{X} \sim \mathrm{N}(60,8)$

$$
\begin{aligned}
& P(X<70)=P\left(\frac{X-60}{8}<\frac{70-60}{8}\right) \\
& =P(z<1.25)
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{z}<1.25)=0.8944
$$

In this example $z_{0}=1.25$

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
:			:			:				:
1 :	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	d. 8962	0.8980	0.8997	9. 9015
;			:							:

Examples

ㅁ $\mathrm{P}(0 \leq \mathrm{z} \leq 1.27)=$.8980-.5=.3980

Examples

$$
\begin{aligned}
\mathrm{P}(Z \geq .55) & =A_{1} \\
& =1-A_{2} \\
& =1-.7088 \\
& =.2912
\end{aligned}
$$

$\square \mathrm{P}(-2.24 \leq \mathrm{z} \leq 0)=.5-.0125=.4875$

Examples

$\mathrm{P}(\mathrm{z} \leq-1.85) \quad=.0322$

Examples (cont.)

$$
\mathrm{P}(-1 \leq \mathrm{Z} \leq 1)=.8413-.1587=.6826
$$

Is k positive or negative?

Direction of inequality; magnitude of probability
Look up . 2514 in body of table; corresponding entry is -.67

Examples (cont.) Vi11)

$$
\begin{aligned}
& P(X>250)=P\left(Z>\frac{250-275}{43}\right) \\
& P\left(Z>\frac{-25}{43}\right)=P(Z>-.58)=1-.2810=.7190
\end{aligned}
$$

Examples (cont.) 1x)

$\mathrm{X} \sim \mathrm{N}(275,43)$ find k so that $\mathrm{P}(\mathrm{x}<\mathrm{k})=.9846$

Example

- Regulate blue dye for mixing paint; machine can be set to discharge an average of $\mu \mathrm{ml}$./can of paint.
\square Amount discharged: $\mathrm{N}(\mu, .4 \mathrm{ml})$. If more than 6 ml . discharged into paint can, shade of blue is unacceptable.
- Determine the setting μ so that only 1% of the cans of paint will be unacceptable

NOIULIOII

$X=$ amount of dye discharged into can

 $X \sim \mathrm{~N}(\mu, .4)$; determine μ so that$$
P(X>6)=.01
$$

