Lesson 100: The Normal Distribution

HL Math - Santowski

Objectives

- □ Introduce the Normal Distribution
- Properties of the Standard Normal
 Distribution
- Introduce the Central Limit Theorem

Normal Distributions

A random variable X with mean μ and standard deviation σ is normally distributed if its probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-(1/2)\left(\frac{x-\mu}{\sigma}\right)^2} - \infty \le x \le \infty$$

where $\pi = 3.14159...$ and $e = 2.71828...$

Normal Probability Distributions

- The expected value (also called the <u>mean</u>)
 E(X) (or μ) can be any number
- \Box The standard deviation σ can be any nonnegative number
- The total area under every normal curve is
 1
- There are infinitely many normal distributions

Total area =1; symmetric around μ

The effects of μ and σ

A family of bell-shaped curves that differ only in their means and standard deviations.

- μ = the mean of the distribution
- σ = the standard deviation

Probability = area under the density curve $P(a \le X \le b) = area$ under the density curve between a and b.

Probability = area under the density curve $P(X \le X \le b) = area under the density curve$ between and b g = 0

Probability = area under the density curve $P(X \le X \le b) = area under the density curve$ between $x = and \frac{b}{8}$

$$\begin{split} P(a \leq X \leq b) &= \text{area under the density curve} \\ \text{between a and b.} \\ P(X=a) &= 0 \\ P(a \leq x \leq b) = P(a < x < b) \end{split} \\ \begin{aligned} P(a \leq X \leq b) &= \int_{a}^{b} f(x) dx \\ P(a \leq x \leq b) &= P(a < x < b) \end{aligned}$$

The Normal Distribution: as mathematical function (pdf)

The Normal PDF

It's a probability function, so no matter what the values of μ and σ , must integrate to 1!

$$\int_{-\infty}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx = 1$$

Normal distribution is defined by its mean and standard dev.

 $\int_{-\infty}^{+\infty} x \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx$

$$Var(X) = \sigma^2 =$$

 $E(X)=\mu =$

$$\int_{-\infty}^{+\infty} x^2 \frac{1}{\sigma\sqrt{2\pi}} \cdot e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2} dx) - \mu^2$$

Standard Deviation(X)= σ

**The beauty of the normal curve:

No matter what μ and σ are, the area between μ - σ and μ + σ is about 68%; the area between μ - 2σ and μ + 2σ is about 95%; and the area between μ - 3σ and μ + 3σ is about 99.7%. Almost all values fall within 3 standard deviations.

68-95-99.7 Rule in Math terms...

Standardizing

- $\Box Suppose X~N(\mu, \sigma)$
- Form a new random variable by subtracting the mean μ from X and dividing by the standard deviation σ:

 $(X-\mu)/\sigma$

□ This process is called <u>standardizing</u> the random variable X.

 \Box (X- μ)/ σ is also a normal random variable; we will denote it by Z:

$$Z = (X-\mu)/\sigma$$

- □ Z has mean 0 and standard deviation 1: $E(Z) = \mu = 0; SD(Z) = \sigma = 1.$ $Z \sim N(0, 1)$
- □ The probability distribution of Z is called the <u>standard normal distribution</u>.

Pdf of a standard normal rv

A normal random variable x has the following pdf:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left[\frac{(x-\mu)^2}{\sigma^2}\right]}, -\infty < x < \infty$$

$$Z \sim N(0,1) \text{ substitute } 0 \text{ for } \mu \text{ and } 1 \text{ for } \sigma$$

$$pdf \text{ for the standard normal rv becomes}$$

$$\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, -\infty < z < \infty$$

Standard Normal Distribution

Important Properties of Z

- #1. The standard normal curve is symmetric around the mean 0
- #2. The total area under the curve is 1;so (from #1) the area to the left of 0 is 1/2, and the area to the right of 0 is 1/2

Finding Normal Percentiles by Hand (cont.)

- □ Table Z is the <u>standard Normal</u> table. We have to convert our data to z-scores before using the table.
- □ The figure shows us how to find the area to the left when we have a z-score of 1.80:

Standard normal probabilities have been calculated and are provided in table *Z*

The tabulated probabilities correspond to the area between Z= $-\infty$ and some z_0

 $Z = Z_0$

Ζ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
:			:			:				:
1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
:			:			:				:
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
:			:			:				:

$\square Example - continued X \sim N(60, 8)$

$$P(X < 70) = P\left(\frac{X - 60}{8} < \frac{70 - 60}{8}\right)$$

= P(z < 1.25)

P(z < 1.25) = 0.8944

In this example $z_0 = 1.25$

0.8944

	Ζ	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	:			:			:				:
	1	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
_	:						:	_			_ :
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	.8962	0.8980	0.8997	9 .9015
	:			:							- :
)			

□ $P(0 \le z \le 1.27) = .8980 - .5 = .3980$

$$P(Z \ge .55) = A_1$$

= 1 - A_2
= 1 - .7088
= .2912

Examples (cont.)

□ P(-1.18≤ z≤ 2.73) = A - A₁ □ = .9968 - .1190 □ = .8778

$P(-1 \le Z \le 1) = .8413 - .1587 = .6826$

Is k positive or negative?

Direction of inequality; magnitude of probability

Look up .2514 in body of table; corresponding entry is -.67

Examples (cont.) viii)

$$P(X > 250) = P(Z > \frac{250 - 275}{43})$$

 $P(Z > \frac{-25}{43}) = P(Z > -.58) = 1 - .2810 = .7190$

Examples (cont.) ix)

ix) $P(225 \le x \le 375)$

 $= P\left(\frac{225 - 275}{43} \le \frac{x - 275}{43} \le \frac{375 - 275}{43}\right)$ $= P(-1.16 \le z \le 2.33) = .9901 - .1230 = .8671$

$X \sim N(275, 43)$ find k so that P(x < k) = .9846

Example

- Regulate blue dye for mixing paint; machine can be set to discharge an average of µ ml./can of paint.
- Amount discharged: N(μ, .4 ml). If more than 6 ml. discharged into paint can, shade of blue is unacceptable.
- □ Determine the setting µ so that only 1% of the cans of paint will be unacceptable

Solution

X = amount of dye discharged into can $X \sim N(\mu, .4)$; determine μ so that P(X > 6) = .011.2 N(μ, .4) 1 8.0 P(X > 6) = .010.6 0.4 0.2 0 6.5 X 5.6 5.9 6.2 4.1 4.4 4.7 5.3 3.5 3.8 μ?

