Lesson 9 - Compositions of
Functions
IBHL1 Math - Santowski
$22_{1 / 4}$

The BIG Picture

- And we are studying this because?
- Functions will be a unifying theme throughout the course \rightarrow so a solid understanding of what functions are and why they are used and how they are used will be very important!
- Sometimes, complicated looking equations can be easier to understand as being combinations of simpler, parent functions

$9 / 21 / 14$	HL.1 Mash - Santowski

(A) Function Composition

So we have a way of creating a new function \rightarrow we can compose two functions which is basically a substitution of one function into another.

- we have a notation that communicates this idea \rightarrow if $f(\boldsymbol{x})$ is one functions and $\boldsymbol{g}(\boldsymbol{x})$ is a second function, then the composition notation is $\rightarrow \mathbf{f o g (x)}$

[^0] HL. 1 Math - Santowski

(B) Composition of Functions - Example

- We will now define f and g as follows:
- $f=\{(3,2),(5,1),(7,4),(9,3),(11,5)\}$
- $g=\{(1,3),(2,5),(3,7),(4,9),(5,10)\}$
- We will now work with the composition of these two functions:
- (i) We will evaluate $f \circ g(3)$ (or $f(g(3))$ and $f \circ g$ (1)
- (ii) evaluate fog (5) and see what happens \rightarrow why?
- (iii) How does our answer in Q(ii) help explain the idea of "existence"?
- (iv) evaluate $g \circ f(9)$ and $g(f(7))$ and $g \circ g(1)$

$9 / 21 / 14$	HL. Math - Santowski

(B) Composition of Functions - Example

- We can define f and g differently, this time as formulas:
- $f(x)=x^{2}-3 \quad$ and $\quad g(x)=2 x+7$
- We will try the following:
- (i) $f(g(3))$ or $f \circ g(3)$
- (ii) $g \circ f(3)$ or $g(f(3))$
- (ii) $f \circ g(x)$ and $g \circ f(x)$
- (ii) evaluate fog (5)
- (iii) evaluate gof (9) and $g(f(7)$) and $g \circ g$ (1)
\qquad
9/21/14 HL.1 Math - Santowski 5

(B) Composition of Functions - Example

- We can define f and g differently, this time as graphs:
- We will try the following:
- (i) $f(g(3))$ or $f \circ g(3)$
- (ii) $g \circ f(3)$ or $g(f(3))$
- (iii) evaluate $f \circ g(2)$ and $f \circ g(-1)$
- (iv) evaluate $g \circ f(0)$ and $g(f(1))$ and $g \circ g(2)$

$$
9 / 21 / 14 \quad \text { H.1. Math - Santowski }
$$

(C) "Existence of Composite"

- Use DESMOS to graph the following functions:

$$
f(x)=\sqrt{x-1} \text { and } g(x)=\ln (x)
$$

- State the RANGE of $f(x)$ and of $g(x)$.
- Determine the equation for $\operatorname{fog}(x)$
- Graph the composite function, $\mathrm{fog}(\mathrm{x})$ and determine its DOMAIN
- $\mathrm{Q}(\mathrm{a})$? Does fog (x) exist \rightarrow Why is the answer NO!?!?!?
- $Q(b)$? Under what domain conditions of $g(x)$ does $f o g(x)$ exist
9/21/14
HLL Math - Santowski
(D) Composition of Functions -

Explaining "Existence of Composite"

- Back to our opening example $f(x)=\sqrt{x-1}$ and $g(x)=\ln (x)$

1. Let's consider a mapping diagram. Complete the mapping diagram for the function:
$\boldsymbol{g}(x)=\ln (x)$, where the Domain $=\{0.1,0.5,1,2, e, 5,8\}$ (ideally $\{x \in R \mid x \geq 0\}$
What is the Range of $\boldsymbol{g}(\boldsymbol{x})$ (use calculator) \qquad ? (ideally $\{y \in \mathbb{R}\}$

[^1]Composition, Existance \& Domains of Existance
3. All of the following functions are mappings of $\mathbb{R} \mapsto \mathbb{R}$ unless otherwise stated.
(a) Determine the composite functions $(f \circ g)(x)$ and $(g \circ f)(x)$, if they exist.
(b) For the composite functions in (a) that do exist, find their range.
i. $f(x)=x+1, g(x)=x^{3} \quad$ ii. $f(x)=x^{2}+1, g(x)=\sqrt{x}, x \geq 0$
iii. $f(x)=(x+2)^{2}, g(x)=x-2 \quad$ iv. $f(x)=\frac{1}{x}, x \neq 0, g(x)=\frac{1}{x}, x \neq 0$,
v. $f(x)=x^{2}, g(x)=\sqrt{x}, x \geq 0 \quad$ vi. $f(x)=x^{2}-1, g(x)=\frac{1}{x}, x \neq 0$
vii. $f(x)=\frac{1}{x}, x \neq 0, g(x)=\frac{1}{x^{2}}, x \neq 0 \quad$ viii. $f(x)=x-4, g(x)=|x|$
ix. $f(x)=x^{3}-2, g(x)=|x+2| \quad$ x. $f(x)=\sqrt{4-x}, x \leq 4, g(x)=x^{2}$
xi. $f(x)=\frac{x}{x+1}, x \neq-1, g(x)=x^{2} \quad$ xii. $f(x)=x^{2}+x+1, g(x)=|x|$
$9 / 21 / 14 \quad$ HL.1 Math - Santowski ${ }^{12}$
(F) Composition of Functions - Example

- For the following pairs of functions
- (a) Determine fog (x)
(a) $f(x)=3 x-6 \quad$ and $\quad g(x)=\frac{1}{3} x+2$
- (b) Determine gof (x)
(b) $f(x)=\frac{1}{x+3}$ and $g(x)=\frac{1-3 x}{x}$
- (c) Graph the original two functions in a square view window \& make
(c) $f(x)=3-(x+2)^{2}$ where $x \geq-2$ observations about the graph \rightarrow then relate these observations back to the composition result

[^0]: 9/21/14

[^1]: Composition, Existance \& Domains of Existance
 15. Given the functions $f(x)=\sqrt{x^{2}-9}, x \in \mathbf{S}$ and $g(x)=|x|-3, x \in \mathbf{T}$, find the largest positive subsets of \mathbb{R} so that \quad (a) $g \circ f$ exists \quad (b) $f \circ g$ exists.
 16. For each of the following functions
 (a) determine if $f \circ g$ exists and sketch the graph of $f \circ g$ when it exists.
 (b) determine if g of exists and sketch the graph of g of when it exists.
 i.

 9/21/14 HL. 1 Math - Santowski ${ }^{10}$

