Lesson 92 – Conditional Probability

HL2 - Santowski

Conditional Probability

- Conditional Probability contains a condition that may limit the sample space for an event.
- You can write a conditional probability using the notation

P(B|A)

- This reads "the probability of event B, given event A"

Conditional Probability

The table shows the results of a class survey. Find *P*(own a pet | female)

Do you own a pet?

	yes	no
female	8	6
male	5	7

Conditional Probability

The table shows the results of a class survey. Find *P*(own a pet | female)

Do you own a pet?

,				
		yes	no	
	female	8	6	14 females;
	male	5	7	13 males

The condition female limits the sample space to 14 possible outcomes.

Of the 14 females, 8 own a pet.

Therefore, $P(\text{own a pet } | \text{ female}) \text{ equals } \frac{8}{14}$

Conditional Probability

The table shows the results of a class survey Find *P*(wash the dishes | male)

Did you wash the dishes last night?

Did you wash the dishes last high			
	yes	no	
female	7	6	
male	7	8	

Conditional Probability

The table shows the results of a class survey Find *P*(wash the dishes | male)

Did you wash the dishes last night?

	yes	no	
female	7	6	13 fem
male	7	8	15 mal

The condition male limits the sample space to 15 possible outcomes.

Of the 15 males, 7 did the dishes.

Therefore, $P(\text{wash the dishes} \mid \text{male}) = \frac{7}{15}$

Let's Try One

Using the data in the table, find the probability that a sample of not recycled waste was plastic. P(plastic | non-recycled)

The given condition limits the sample space to non-recycled waste.

A favorable outcome is non-recycled plastic.

Material	Recycled	Not Recycled
Paper	34.9	48.9
Metal	6.5	10.1
Glass	2.9	9.1
Plastic	1.1	20.4
Other	15.3	67.8

Let's Try One

Using the data in the table, find the probability that a sample of not recycled waste was plastic. P(plastic | non-recycled)

The given condition limits the sample space to non-recycled waste.

A favorable outcome is

non-recycled plastic.

 Material Paper
 Recycled 34.9
 Not Recycled 48.9

 Metal Glass
 6.5
 10.1

 Glass
 2.9
 9.1

 Plastic
 1.1
 20.4

 Other
 15.2
 67.9

 $P(\text{plastic} \mid \text{non-recycled}) = \frac{20.4}{48.9 + 10.1 + 9.1 + 20.4 + 67.8}$

 $= \frac{20.4}{156.3}$ ≈ 0.13

The probability that the non-recycled waste was plastic is about 13%.

Conditional Probability Formula

 For any two events A and B from a sample space with P(A) does not equal zero

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

ı

Conditional Probability

Researchers asked people who exercise regularly whether they jog or walk. Fifty-eight percent of the respondents were male. Twenty percent of all respondents were males who said they jog. Find the probability that a male respondent jogs.

Conditional Probability

Researchers asked people who exercise regularly whether they jog or walk. Fifty-eight percent of the respondents were male. Twenty percent of all respondents were males who said they jog. Find the probability that a male respondent jogs.

Relate: P(male) = 58%P(male) = 30%

Let $\boxed{B} = \text{jogs}$.

Write: $P(\boxed{A} | \boxed{B}) = \frac{P(\boxed{A} \text{ and } \boxed{B})}{P(\boxed{A})}$

 $P(\underline{A}\underline{B}) = \frac{0.2}{0.58}$ Substitute 0.2 for P(A and B) and 0.58 for P(A). ≈ 0.344 Simplify.

The probability that a male respondent jogs is about 34%.

Using Tree Diagrams

Jim created the tree diagram after examining years of weather observations in his hometown. The diagram shows the probability of whether a day will begin clear or cloudy, and then the probability of rain on days that begin clear and cloudy.

a. Find the probability that a day will start out clear, and then will rain.

Using Tree Diagrams

Jim created the tree diagram after examining years of weather observations in his hometown. The diagram shows the probability of whether a day will begin clear or cloudy, and then the probability of rain on days that begin clear and cloudy.

a. Find the probability that a day will start out clear, and then will rain.
 The path containing clear and rain represents days that start out clear and then will rain.

The probability that a day will start out clear and then rain is about 1%.

Conditional Probability

(continued)

b. Find the probability that it will not rain on any given day.

Conditional Probability

(continued)

b. Find the probability that it will not rain on any given day.

The paths containing clear and no rain and cloudy and no rain both represent a day when it will not rain. Find the probability for both paths and add them.

 $P(\text{clear and no rain}) + P(\text{cloudy and no rain}) = P(\text{clear}) \cdot P(\text{no rain} \mid \text{clear}) + P(\text{cloudy}) \cdot P(\text{no rain} \mid \text{cloudy})$

= 0.28(.96) + .72(.69) = 0.7656

The probability that it will not rain on any given day is about 77%.

Let's Try One

Pg 68

- A survey of Pleasanton Teenagers was given.
- 60% of the responders have 1 sibling; 20% have 2 or more siblings
- Of the responders with 0 siblings, 90% have their own room
- Of the respondents with 1 sibling, 20% do not have their own room
- Of the respondents with 2 siblings, 50% have their own room

Create a tree diagram and determine

- A) P(own room | 0 siblings)
- B) P(share room | 1 sibling)

- 60% of the responders have 1 sibling; 20% have 2 or more siblings
- Of the responders with no siblings, 90% have their own room
- Of the respondents with 1 sibling, 20% do not have their own room
- of the respondents with 1 sibling, 20% do not have their own room

 Of the respondents with 2 siblings, 50% have their own room

Create a tree diagram and determine

A) P(own room | 0 siblings)

more

A) (0.280.9)= 18°1

11.3 - Conditional Probability - Events Involving "And"

Conditional Probability

The probability of an event based on the fact that some other event has occurred, will occur, or is occurring.

The probability of event B occurring given that event A has occurred is usually stated as "the conditional probability of B, given A; P(B/A)

$$\frac{P(B/A) = P(A \cap B)}{P(A)} = \frac{P(A \text{ and } B)}{P(A)}$$

11.3 - Conditional Probability - Events Involving "And"

Conditional Probability

Example:

A number from the sample space $S = \{2, 3, 4, 5, 6, 7, 8, 9\}$ is randomly selected. Given the defined events A and B,

A: selected number is odd, and

B: selected number is a multiple of 3

find the following probabilities.

a) P(B) b) P(A and B) c) P(B/A)
a) B =
$$\{3, 6, 9\}$$
 P(B) = $3/8$
b) P(A and B) = P($\{3, 5, 7, 9\} \cap \{3, 6, 9\}$)
= P($\{3, 9\}$) = $2/8$ = $1/4$
c) Probability of B given A has occurred:

11.3 - Conditional Probability - Events Involving "And"

Conditional Probability

Example:

Given a family with two children, find the probability that both are boys, given that at least one is a boy.

given that at least one is a boy.

Conditional Probability
$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$S = \{gg, gb, bg, bb\}$$

$$A = \text{at least one boy} \qquad A = \{gb, bg, bb\}$$

$$B = \text{both are boys} \qquad B = \{bb\}$$

$$P(A \text{ and } B) = P(\{gb, bg, bb\}) \cap \{bb\}) = P(\{bb\}) = 1/4$$

$$P(A) = P(\{gb, bg, bb\}) = 3/4$$

 $\frac{P(A \text{ and } B)}{P(A)} = \frac{1/4}{3/4} = 1/3$

$P(B/A) = \frac{P(A \text{ and } B)}{P(B/A)} = \frac{1/4}{P(B/A)} = 1/2$

11.3 - Conditional Probability - Events Involving "And"

Independent Events

Two events are *Independent* if the occurrence of one of them has no effect on the probability of the other.

$$P(B/A) = P(B)$$
or
$$P(A/B) = P(A)$$

11.3 - Conditional Probability - Events Involving "And"

Independent Events

Example:

A single card is randomly selected from a standard 52-card deck. Given the defined events A and B,

B: the selected card is red. A: the selected card is an ace, find the following probabilities.

a) P(B) b) P(A and B) c) P(B/A)
a) P(B) =
$$\frac{26}{52}$$
 = 1/2

b) $P(A \text{ and } B) = P(\{Ah, Ad, Ac, As\} \cap \{all \text{ red}\}) = P(\{Ah, Ad\}) = 2/52$

c)
$$P(B/A) = \frac{P(A \text{ and } B)}{P(A)} = \frac{2/52}{4/52} = 1/2$$

Events A and B are independent as P(B) = P(B/A).

11.3 - Conditional Probability - Events Involving "And"

Multiplication Rule of Probability - Events Involving "And"

If A and B are any two events then

$$P(A \text{ and } B) = P(A) \cdot P(B/A)$$

If A and B are independent events then

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

Example:

A jar contains 4 red marbles, 3 blue marbles, and 2 yellow marbles. What is the probability that a red marble is selected and then a blue one without replacement?

 $P(Red \text{ and } Blue) = P(Red) \cdot P(Blue/Red)$

$$= 4/9 \cdot 3/8$$

$$= 12/72$$

$$= 1/8 = 0.1667$$

11.3 - Conditional Probability - Events Involving "And"

Multiplication Rule of Probability - Events Involving "And"

A jar contains 4 red marbles, 3 blue marbles, and 2 yellow marbles. What is the probability that a red marble is selected and then a blue one with replacement?

P(Red and Blue) = P(Red) · P(Blue)
=
$$4/9 \cdot 3/9$$

= $12/81$
= $4/27 = 0.148$