Lesson 3 - Introduction to Series	
	Math HL1 - Santowski
$8 / 2382014$	Mathlu1- smome

(A) Review

- A sequence is a set of ordered terms, possibly related by some pattern
- One such pattern is called arithmetic because each pair of consecutive terms has a common difference
- The general term of an arithmetic sequence is defined by the formula $u_{n}=u_{1}+(n-1) d$
- A geometric sequence is one in which the consecutive terms differ by a common ratio
- The general term of an geometric sequence is defined by the formula $u_{n}=u_{1} \cdot r^{(n-1)}$

$$
8 / 23 / 2014
$$

(B) Arithmetic Series

- A series is defined as the sum of the terms of a sequence.
- So in this case our sequence was $1,2,3,4,5, \ldots \ldots 99,100$
- As an opening exercise, you started by trying to find the sum of the first 100 numbers:
- Symbolically, $\mathrm{S}_{100}=1+2+3+4+5+\ldots . .+100$

(B) Arithmetic Series - PATTERNS

- A series is defined as the sum of the terms of a sequence.
- Here is an easy way to set it up:

S_{100}	1	2	3	4	5	$\ldots . .$.	99
$\mathrm{~S}_{100}$	100	99	98	97	96	$\ldots \ldots$.	2
$2 \mathrm{~S}_{100}$	101	101	101	101	101	$\ldots \ldots$.	101

- So then the sum is $(101)(100) \div 2$

8/23/2014

(B) Arithmetic Series

- For an arithmetic sequence then the formula for the sum of its terms is:

$$
S n=\frac{n}{2}\left(u_{1}+u_{n}\right)=\frac{n}{2}\left(2 u_{1}+(n-1) d\right)
$$

(C) Examples

- Ex 1. Find the sum of the series $13+24+35+\ldots+156$
- Ex 2 . For the series $2+11+20+29+\ldots \ldots$, find u_{20} and S_{20}
- Ex 3. The fifth term of an arithmetic series is 9 and the sum of the first 16 is 480 . Find the first three terms of the series.
- Ex 4. In an arithmetic series of 50 terms, the 17th term is 53 and the 28 th term is 86 . Find the sum of the series.

8/23/2014

(C) Examples

- ex 5. Shayla deposited \$128 into her account. Each week she deposits $\$ 7$ less than the previous week until she deposits her last deposit of \$2. What total amount did she deposit?
- ex 6. Jayne buys 10 widgets on the Jan $1^{\text {st }}, 15$ on the $1^{\text {st }}$ of Feb, 20 on the $1^{\text {st }}$ of March, etc..... How many widgets has she acquired in 2 years? How long does it take her to acquire 5,000 widgets?

(D) Geometric Series - PATTERNS

- Find the sum of the first 7 terms of the series
- $\mathrm{S}_{7}=1+3+9+27+81+243+729$
- $S_{7}=a+a r+a r^{2}+a r^{3}+a r^{4}+a r^{5}+a r^{6}$

$3 \mathrm{~S}_{7}-\mathrm{S}_{7}=2 \mathrm{~S}_{7}=\left(3+3^{2}+3^{3}+3^{4}+3^{5}+3^{6}+3^{7}\right)-(1+3$ $\left.+3^{2}+3^{3}+3^{4}+3^{5}+3^{6}\right)=3^{7}-1$
- $S_{7}=1 / 2\left(3^{7}-1\right)$

8/23/2014

 Nath HL1 - Santowski
(E) Examples

- ex 1. Find S_{8} given:
- (a) $2-6+18-54+\ldots$.
- (b) $200+100+50+25+\ldots$.
- ex 2. Find the total amount you make if you were paid a rupee a day, but the amount was doubled every day for a month
- ex 3. Find the sum $1 / 16+1 / 4+1+4+\ldots+65536$

8/23/2014
Math HLL - Santowski

(E) Examples

- Ex 4. The fifth term of a geometric series is 405 and the sixth term is 1215 . Find the sum of the first nine terms.
- ex 5 . A ball drops from a height of 16 m and its height on the bounce is $5 / 8$ th of the previous maximum height. Determine the total height bounced by the ball after it touches the ground for the $7^{\text {th }}$ bounce.
- Given the series $S=200+100+50+25$..., which is an example of an infinite geometric series
- (i) Determine the first 4 partial sums of the series (determine each of $S_{1}, S_{2}, S_{3}, S_{4}$)
- (ii) Determine the seven partial sum $\left(S_{7}\right)$
- (iii) Determine S_{13}
- (iv) Predict $S_{1,000,000}$

8/23/2014 Math HL. - Santowski

(F) Examples - Infinite Series

- The series $1 / 2+1 / 4+1 / 8+1 / 16+\ldots . .$. is an example of an infinite geometric series.
- (a) Determine the sum of this series.
- (b) Is it possible to find the sum of any infinite geometric sequence? Explain.
- (c) Under what conditions is it possible to find the sum of an infinite geometric sequence

8/23/2014 Math HLL1 - Santowski

(I) Internet Links

- Geometric Sequences \& Series From West Texas A\&M
- Arithmetic Sequences \& Series From West Texas A\&M U

8/23/2014
Math HL1 - Santowski

