The following questions relate to evaluations & working with & understanding function notation
(a) Evaluate the following:
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(d) Solve the following: ! 25 (7 :25
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(e) state the graphical and algebraic significance of f(0) as welf(ai gJ(Ogi o825 novaue
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(f) State the domain and range of g{x) and also for f(x) ) D - L '(C UL\) g n é /R ) : %/W éfﬁ
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(g) is f(-4.75) positive or negative? Explain how you determined this o R | "C[’k ) j(_t} £R \/( ‘ﬁi
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(h) is g(-4.75) positive or negative? Explain how you determined this. ( o >’
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(i) state the graphical and algebraic significance of f(x) = 0 as wellas g(x) =0
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(j) For whatj\:alues ofj:gi: f(x) > 0? Explain howyoudgt;gined this. {%ég/ %é _é % ,6( "}((\C’ ,Q@
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(k) Solve g(x) < 0. ﬁ P {35 < 5 ﬁ +1< q{{WS}
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(I) How often does the line y = -1 intersect y = f(x)? Intersect y = g(x) & é‘“\% oo % Uﬂ It kwice oq jbd
'“;gn) How often does the line x = -1 intersect y = f(x)? Intersecty =g(x) 002 an @qd\
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i&Gﬁ%@ (n) Interpret the meaning of the state f(x) = g(x) then solve the equation f(x) = g(x).
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(o) Interpret the meaning of the state f(x) < g(x) then solve the inequality f(x) > g(x). x 0= L gt
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(p) Calculate the value of the difference quotient w as well as ﬂ%)‘_i;(z)_ and explain th
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Now let’s work on other function concepts that relate to characteristics of functions, specifically y = f(x) now.

(a) On what interval is y = f(x) increasing, given the restricted domain of {x ER| -b<xs= 7}?
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(b) On what interval is y = f(x) decreasing, given the restricted domain of (-6,7]?
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(c) Where are the local maximums & minimums of y = f(x), given the restricted domain of {x ER| -b<xs=< 7}?
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(d) Given the restricted domain of {XER’ -10<xs 4}, on what interval is y = f(x) concave up? Concave down?
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(e) Where are the roots of y = f(x)?
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(f) Doesy = f(x) appear to have any asymptotes? If so, where?
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(g) What does the concept of discontinuities mean, given that | have created y = f(x) to be a discontinuous function.

(h) What is a jump discontinuity? Where does f(x) have a “jump” discontinuity?
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(i) What is an infinite discontinuity? Where does f(x) have an infinite discontinuity?
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(g) What does the concept of discontinuities mean, given that | have created y = f(x) to be a discontinuous function.

(h) What is a jump discontinuity? Where does f(x) have a “jump” discontinuity?

(i) What is an infinite discontinuity? Where does f(x) have an infinite discontinuity?

(i) fh(x)=x+2, what would the graph of y = f o h (x) look like? Why? b\. L Q"(L
¢
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(k) If h(x) = x + 2, what would the graph of y =h o f (x) look like? Why?
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(m) What would the graph of y = f(-x) look like? Why? ‘ngﬂ C/!ﬂ/lj&z }1%
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(n) Explain how the graph of y =ﬂx) changes if you are asked to graphed y = | f(x)
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(o) To determine the end behavior of the function, what does the function “do” as X — +% and what does the & TCE Qdﬂ,ﬁ
function “do” as x — -0 ? accos® X aX)5
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(p) What does the term “bounded” mean and explain if/how it applies to y = f(x) & to y = g(x)
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(a) Evaluate lim f(x) & lim f(x) & lim f(x) & f(-5). . aJr sl
(r) Evaluate xl-l-']: fix) & xl_l_r_\: f(x) & ’I_i_rrl f(x) &f(-6) tmf\ —p (\% o mmi /g_ {JS/U - O
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(s) Graph the inverse relation for y = g(x).

(t) Classify y = f(x) & y = g(x) as being either: (i) one to one, (ii) one to many, (iii) many to one, or (iv) many to many
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{u) Which function(s) have/has symmetries : (i) f(x) only, (ii) g{x) only, (iii) both f(x) and g(x), (iv) neither f(x) nor g(x)
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