Lesson 21-Review of Trigonometry
IB Math HL - Santowski

BIG PICTURE

- The first of our keys ideas as we now start our Trig Functions \& Analytical Trig Unit:
- (1) How do we use current ideas to develop new ones

BIG PICTURE

- The second of our keys ideas as we now start our Trig Functions \& Analytical Trig Unit:
- (2) What does a TRIANGLE have to do with SINE WAVES develop new ones \rightarrow We will use RIGHT TRIANGLES and CIRCLES to help develop new understandings

[^0]B Math HL - Santowsk ${ }^{3}$

Right Triangles

IB Math HL - Santowski understand how the sine and cosine ratios from right triangles could ever be used to create function equations that are used to model periodic phenomenon

11/17/2014

(A) Review of Right Triangle Trig

- Trigonometry is the study and solution of Triangles. Solving a triangle means finding the value of each of its sides and angles. The following terminology and tactics will be important in the solving of triangles.
- Pythagorean Theorem $\left(a^{2}+b^{2}=c^{2}\right)$. Only for right angle triangles
- Sine (sin), Cosecant (csc or $1 / \mathrm{sin}$) ratios
- Cosine (cos), Secant (sec or $1 / \mathrm{cos}$) ratios
- Tangent (tan), Cotangent (cot or $1 /$ tan) ratios
- Right/Oblique triangle

11/17/2014 IB Math HL - Santowski

(A) Review of Right Triangle Trig

- In a right triangle, the primary trigonometric ratios (which relate pairs of sides in a ratio to a given reference angle) are as follows:
- sine $A=$ opposite side/hypotenuse side \& the cosecant $A=\csc A=h / o$ - cosine $A=$ adjacent side/hypotenuse side \& the secant $A=\sec A=h / a$
- tangent $A=$ adjacent side/opposite side \& the cotangent $A=\cot A=a / o$
- recall SOHCAHTOA as a way of remembering the trig. ratio and its corresponding sides

(C) Review of Trig Ratios and

Triangles

\qquad
\qquad
\qquad
-

\qquad
$c=$
$c=$

- (a) $\sin \left(32^{\circ}\right)$
- (a) $\sin (x)=0.4598$
- (b) $\cos \left(69^{\circ}\right)$
- (b) $\cos (x)=0.7854$
(c) $\tan \left(10^{\circ}\right)$
(c) $\tan (x)=1.432$
(d) $\csc \left(78^{\circ}\right)$
(d) $\csc (x)=1.132$
- (e) $\sec \left(13^{\circ}\right)$
(e) $\sec (x)=1.125$
- (f) $\cot \left(86^{\circ}\right)$
- (f) $\cot (x)=0.2768$

11/17/2014

Evaluate and interpret: interpret:

(B) Review of Trig Ratios

- If $\sin (x)=2 / 3$, determine the values of $\cos (x) \& \cot (x)$
- If $\cos (x)=5 / 13$, determine the value of $\sin (x)+\tan (x)$
- If $\tan (x)=5 / 8$, determine the sum of $\sec (x)+2 \cos (x)$
- If $\tan (x)=5 / 9$, determine the value of $\sin ^{2}(x)+\cos ^{2}(x)$
- A right triangle with angle $\alpha=30^{\circ}$ has an adjacent side \boldsymbol{X} units long. Determine the lengths of the hypotenuse and side opposite α.

11/17/2014
IB Math HL-Santowski

RADIAN MEASURE

IB HL Math - Santowski
(B) Radians

- We can measure angles in several ways - one of which is degrees
- Another way to measure an angle is by means of radians
- One definition to start with \rightarrow an arc is a distance along the curve of the circle \rightarrow that is, part of the circumference
- One radian is defined as the measure of the angle subtended at the center of a circle by an arc equal in length to the radius of the circle

(B) Radians

If we rotate a terminal arm (OP)
around a given angle, then the end
of the arm (at point Q) moves along
the circumference from P to Q
If the distance point P moves is equal
in measure to the radius, then the angle
that the terminal arm has rotated is defined
as one radian

If P moves along the circumference a distance twice that of the radius, then the angle subtended by the arc is 2 radians

So we come up with a formula of $\theta=\operatorname{arc}$ length $/$ radius $=\mathrm{s} / \mathrm{r}$
(C) Converting from Degrees to Radians

(D) Converting from Radians to Degrees	
Let's work with our second quadrant angles with our equivalent ratios:	Convert the following angles from degree measure to radian measure:
- $2 \pi / 3$ radians	- 4.2 rad
- $3 \pi / 4$ radians	- 0.675 rad
- $5 \pi / 6$ radians	- 18 rad
	- 5.7 rad

(E) Table of Equivalent Angles

- We can compare the measures of important angles in both units on the following table:

0°	90°	180°	270°	360°

```
(B) Review of Trig Ratios
```

- Evaluate and interpret:

- Evaluate and

 interpret:- (a) $\sin (0.32)$
(a) $\sin (x)=0.4598$
(b) $\cos (1.69)$
(b) $\cos (x)=0.7854$
- (c) $\tan (2.10)$
(c) $\tan (x)=1.432$
- (d) $\csc (0.78)$
- (e) $\sec (2.35)$
- (d) $\csc (x)=1.132$
- (e) $\sec (x)=1.125$
- (f) $\cot (x)=0.2768$

Angles in Standard Position

IB Math HL - Santowski

(A) Angles in Standard Position

- Angles in standard position are defined as angles drawn in the Cartesian plane where the initial arm of the angle is on the x axis, the vertex is on the origin and the terminal arm is somewhere in one of the four quadrants on the Cartesian plane position

- 195°
- 140°
- 315°
- 870°
- -100°
- 4 radians

11/17/2014
IB Math HL - Santowski ${ }^{21}$

(A) Angles in Standard Position

- We will divide our Cartesian plane into 4 quadrants, each of which are a multiple of 90 degree angles

The $x-y$ plane is divided into four quadrants by the x - and
y-axes. If θ is a positive angle, then the terminal arm lies in

- quadrant I when $0^{\circ}<\theta<90^{\circ}$
- quadrant Il when $90^{\circ}<\theta<180^{\circ}$
- quadrant III when $180^{\circ}<\theta<270^{\circ}$
- quadrant IV when $270^{\circ}<\theta<360^{\circ}$

\qquad
11/17/2014
B Math HL- Santowski
24

(A) Coterminal Angles

- Coterminal angles share the same terminal arm and the same initial arm.
- As an example, here are four different angles with the same terminal arm and the same initial arm.

If $\theta_{1}=120^{\circ}$, then

$\theta_{2}=360^{\circ}+120^{\circ}$ $=480^{\circ}$

$\theta_{3}=720^{\circ}+120^{\circ}$ $=840^{\circ}$

$\theta_{4}=-360^{\circ}+120$ $=-240^{\circ}$

IB Math HL- Santowski

(A) Principle Angles and Related Acute Angles

- The principal angle is the angle between 0° and 360°
- The coterminal angles of $480^{\circ}, 840^{\circ}$, and 240° all share the same principal angle of 120°
- The related acute angle is the angle formed by the terminal arm of an angle in standard position and the x axis.
- The related acute angle is always positive and lies between 0° and 90°.

IB Math HL- Santowski

(B) Examples

- Example 1

Determine the principal angle and the related acute angle for $\theta=-225^{\circ}$.

Solution
Sketch $\theta=-225^{\circ}$ terminating in quadrant II. Label the principal angle and the
related acute angle

The principal angle is the smallest positive angle that is coterminal to -225°. In this case, $360^{\circ}-225^{\circ}=135^{\circ}$. The related acute angle lies between the terminal arm and the x-axis. It is positive but less than 90°. In this case, $\left|-225^{\circ}-\left(-180^{\circ}\right)\right|=45^{\circ}$. Or, using the principal angle, $180^{\circ}-135^{\circ}=45^{\circ}$.
(B) Examples

- Example 2

Determine the next two consecutive positive coterminal angles and the first negative coterminal angle for 43°
(B) Examples

Example 2

- Determine the next two consecutive positive coterminal angles and the first negative coterminal angle for 43°

Solution
Sketch each situation, showing the principal angle of 43°.

(a) The first positive coterminal angle for 43° is $360^{\circ}+43^{\circ}=403^{\circ}$.
(b) The second coterminal angle is $360^{\circ}+360^{\circ}+43^{\circ}=763^{\circ}$.
(c) The first negative coterminal angle is $-360^{\circ}+43^{\circ}=-317^{\circ}$.

11/17/2014
IB Math HL - Santowski
${ }_{30}$

(B) Examples

- For the given angles, determine:
- (a) the principle angle
- (b) the related acute angle (or reference angle)
- (c) the next 2 positive and negative co-terminal angles
- (i) 143°
(ii) -132°
(iii) 419°
(iv) -60°
(v) 4 radians
(vi) $-\frac{17 \pi}{12}$
(vii) $\frac{7 \pi}{6}$
(viii) - 5.25 radians

(C) Ordered Pairs \& Right Triangle Trig

- To help discuss angles in a Cartesian plane, we will now introduce ordered pairs to place on the terminal arm of an angle

$0^{\circ}<\theta_{1}<18$
θ_{1} terminates in quadrant II

$180^{\circ}<\theta_{2}<270^{\circ}$

$P(x, y)$ lies in the negative y-axis. θ_{1} terminates in quadrant II. $\quad \theta_{2}$ terminates in quadrant III. $\quad \theta_{3}=270$

(C) Ordered Pairs \& Right Triangle Trig

- So to revisit our six trig ratios now in the context of the xy coordinate plane:
- We have our simple right triangle drawn in the first quadrant

$$
\sin \theta=\frac{o}{h}=\frac{y}{r} \quad \csc \theta=\frac{h}{o}=\frac{r}{y}
$$

(C) EXAMPLES

- Point $P(-3,4)$ is on the terminal arm of an angle, θ, in standard position.
- (a) Sketch the principal angle, θ and show the related acute/reference angle

$$
\cos \theta=\frac{a}{h}=\frac{x}{r} \quad \sec \theta=\frac{h}{a}=\frac{r}{x}
$$

- (b) Determine the values of all six trig ratios of θ.
- (c) Determine the value of the related acute angle to the

$$
\tan \theta=\frac{o}{a}=\frac{y}{x} \quad \cot \theta=\frac{a}{o}=\frac{x}{y}
$$ nearest degree and to the nearest tenth of a radian.

- (d) What is the measure of θ to the nearest degree and to the nearest tenth of a radian?

${ }^{11 / 17 / 2014}$	IB Math HL- Santowski	34

(C) Examples

- Point $P(-9,4)$ is on the terminal arm of an angle in standard position.
(a) Sketch the principal angle, θ.
(b) What is the measure of the related acute angle to the nearest degree?
(c) What is the measure of θ to the nearest degree?

(C) Examples

- Determine the angle that the line $2 y+x=6$ makes with the positive x axis

Point $P(-5,-3)$ is on the terminal arm of an angle, θ, in standard position.
(a) Sketch the principal angle, θ.
(b) What is the measure of the related acute angle to the nearest degree?
(c) What is the measure of θ to the nearest degree?
(d) What is the measure of the first negative coterminal angle?

Point $P(-5,-8)$ is on the terminal arm of an angle, θ, in standard position.
Determine all values of θ for $-540^{\circ} \leq \theta \leq 270^{\circ}$

11/17/2014
IB Math HL - Santowski

(B) Trig Ratios of First Quadrant Angles Quadrantal Angles

```
- Let's go back to the x,y,r definitions of sine and cosine atios and use ordered pairs of angles whose terminal arms lie on the positive \(x\) axis ( \(0^{\circ}\) angle) and the positive y axis ( \(90^{\circ}\) angle)
- \(\sin \left(0^{\circ}\right)=\)
- \(\cos \left(0^{\circ}\right)=\)
- \(\tan \left(0^{\circ}\right)=\)
- \(\sin \left(90^{\circ}\right)=\sin (\pi / 2)=\)
- \(\cos \left(90^{\circ}\right)=\cos (\pi / 2)=\)
- \(\tan \left(90^{\circ}\right)=\tan (\pi / 2)=\)
```


Working with Special Triangles

IB Math HL

(A) Review - Special Triangles

```
| Review 30' - 60 -
    - Review 30` - 60
    90}\mathrm{ triangle }\boldsymbol{->}3\mp@subsup{0}{}{\circ
        90
    \pi/6 rad
        \pi/3 rad
    - }\operatorname{sin}(3\mp@subsup{0}{}{\circ})=\operatorname{sin}(\pi/6)= | \operatorname{sin}(6\mp@subsup{0}{}{\circ})=\operatorname{sin}(\pi/3)
    - }\operatorname{cos}(3\mp@subsup{0}{}{\circ})=\operatorname{cos}(\pi/6)= - \operatorname{cos}(6\mp@subsup{0}{}{\circ})=\operatorname{cos}(\pi/3)
    - tan(3\mp@subsup{0}{}{\circ})=\operatorname{cot}(\pi/6)= - tan(6\mp@subsup{0}{}{\circ})=\operatorname{tan}(\pi/3)=
    | }\operatorname{csc}(3\mp@subsup{0}{}{\circ})=\operatorname{csc}(\pi/6)= | \operatorname{csc}(6\mp@subsup{0}{}{\circ})=\operatorname{csc}(\pi/3)
(- }\operatorname{sec}(3\mp@subsup{0}{}{\circ})=\operatorname{sec}(\pi/6)= | \operatorname{sec}(6\mp@subsup{0}{}{\circ})=\operatorname{sec}(\pi/3)
- }\operatorname{cot}(3\mp@subsup{0}{}{\circ})=\operatorname{cot}(\pi/6)= | \operatorname{cot}(6\mp@subsup{0}{}{\circ})=\operatorname{cot}(\pi/3)
```


$=$

$=$

11/17/2014
IB Math HL - Santowski
(B) Trig Ratios of First Quadrant Angles

- We have already reviewed first quadrant angles in that we have discussed the sine and cosine (as well as other ratios) of $30^{\circ}, 45^{\circ}$, and 60° angles
- What about the quadrantal angles of 0° and 90° ?
-

(A) Review - Special Triangles

- Review $45^{\circ}-45^{\circ}-90^{\circ}$ triangle
- $\sin \left(45^{\circ}\right)=\sin (\pi / 4)=$
- $\cos \left(45^{\circ}\right)=\cos (\pi / 4)=$
- $\tan \left(45^{\circ}\right)=\tan (\pi / 4)=$
- $\csc \left(45^{\circ}\right)=\csc (\pi / 4)=$
- $\sec \left(45^{\circ}\right)=\sec (\pi / 4)=$
- $\cot \left(45^{\circ}\right)=\cot (\pi / 4)=$

11/17/2014 IB Math HL- Santowski
,
(B) Trig Ratios of First Quadrant Angles Summary

	0°	30°	45°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	$\pm \infty$

11/17/2014
(G) Summary - As a "Unit Circle"

■

11/17/2014 IB Math HL - Santowski
(G) Summary - As a "Unit Circle"

- The Unit Circle is a tool used in understanding sines and cosines of angles found in right triangles.

It is so named because its radius is exactly one unit in length, usually just called "one".

- The circle's center is at the origin, and its circumference comprises the set of all points that are exactly one unit from the origin while lying in the plane.

(H) EXAMPLES

- Simplify or solve
(a) $\sin 30^{\circ} \cos 30^{\circ}-\tan 30^{\circ}$
(b) $\sin 45^{\circ} \sin 30^{\circ}-\left(\tan 60^{\circ}\right)^{2}$
(c) $\frac{\sin 150^{\circ}}{\sec 210^{\circ}}-\csc \left(-330^{\circ}\right)$
(b) $\sin (\theta)=-\frac{1}{2}$
(c) $2 \cos (\theta)=1$
(d) $\sqrt{3} \tan (\theta)=1$

11/17/2014 IB Math HL-Santowski 46

(H) EXAMPLES

- Simplify the following:
(a) $\sin ^{2}\left(\frac{2 \pi}{3}\right)+\cos ^{2}\left(\frac{2 \pi}{3}\right)=$
(b) $\frac{\sin \left(225^{\circ}\right)}{\cos \left(225^{\circ}\right)}$ compared to $\tan \left(225^{\circ}\right)$
(c) $2 \sin \left(-\frac{\pi}{6}\right) \cos \left(-\frac{\pi}{6}\right)$ compared to $\sin \left(-\frac{\pi}{3}\right)$

[^0]: 11/17/2014

