**Example 2** Find 
$$\frac{dy}{dx}$$
 if  $y = \frac{\sqrt{x}}{1 + 2x}$ .

Solution

$$\frac{dy}{dx} = \frac{(1+2x)\frac{d}{dx}\sqrt{x} - \sqrt{x}\frac{d}{dx}(1+2x)}{(1+2x)^2}$$
$$= \frac{(1+2x)\frac{1}{2\sqrt{x}} - \sqrt{x}(2)}{(1+2x)^2}$$

Now we multiply the numerator and denominator by  $2\sqrt{x}$ :

$$\frac{dy}{dx} = \frac{1 + 2x - (2\sqrt{x})(2\sqrt{x})}{2\sqrt{x}(1 + 2x)^2} = \frac{1 - 2x}{2\sqrt{x}(1 + 2x)^2}$$

llows:

formula Quotient imes the erivative ator.

$$(x^3 + 1)$$



o simplify

## **EXERCISE 2.5**

## B 1. Differentiate.

(a) 
$$f(x) = \frac{x-1}{x+1}$$

(b) 
$$f(x) = \frac{2x-1}{x^2+1}$$

(c) 
$$g(x) = \frac{x}{x^2 + 2x - 1}$$

(d) 
$$g(x) = \frac{x^3 - 1}{x^2 + x + 1}$$

(e) 
$$y = \frac{\sqrt{x}}{x^2 + 1}$$

$$(f) \quad y = \frac{\sqrt{x+2}}{\sqrt{x-2}}$$

(g) 
$$f(t) = \frac{2t+1}{t^2-3t+4}$$

(h) 
$$g(t) = \frac{2t^2 + 3t + 1}{t - 1}$$

(i) 
$$f(x) = \frac{1}{x^4 - x^2 + 1}$$

(j) 
$$f(x) = \frac{ax + b}{cx + d}$$

(k) 
$$f(x) = \frac{x^6}{x^5 - 10}$$

(1) 
$$f(x) = \frac{1 - \frac{1}{x}}{x + 1}$$

## 2. Find the domain of f and compute its derivative.

(a) 
$$f(x) = \frac{2+x}{1-2x}$$

(b) 
$$f(x) = \frac{x}{x^2 - 1}$$

(c) 
$$f(x) = \frac{1}{(x+1)(2x-3)}$$
 (d)  $f(x) = \frac{2x+1}{x^2+2x-3}$ 

(d) 
$$f(x) = \frac{2x+1}{x^2+2x-3}$$

(e) 
$$f(x) = \frac{x^2 + 2x}{x^4 - 1}$$

$$(f) f(x) = \frac{x^2}{\sqrt{x} - 3}$$

(a) 
$$y = \frac{x}{x-2}$$
, (4, 2)

(a) 
$$y = \frac{x}{x-2}$$
, (4,2) (b)  $y = \frac{1+3x}{2-3x}$ , (1, -4)

(c) 
$$y = \frac{1}{x^2 + 1}$$
,  $\left(-2, \frac{1}{5}\right)$  (d)  $y = \frac{x^3 - 1}{1 + 2x^2}$ ,  $(1, 0)$ 

(d) 
$$y = \frac{x^3 - 1}{1 + 2x^2}$$
, (1,0)

4. If 
$$f(2) = 3$$
,  $f'(2) = 5$ ,  $g(2) = -1$ , and  $g'(2) = -4$ , find  $\left(\frac{f}{g}\right)'(2)$ .

5. Show that there are no tangents to the curve 
$$y = \frac{x+2}{3x+4}$$
 with positive slope.

- 6. At what points on the curve  $y = \frac{x^2}{2x + 5}$  is the tangent line horizontal?
- 7. Find the points on the curve  $y = \frac{x}{x-1}$  where the tangent line is parallel to the line x + 4y = 1.
- 8. If f is a differentiable function, find expressions for the derivatives of the following functions.

(a) 
$$y = \frac{1}{f(x)}$$

(b) 
$$y = \frac{f(x)}{x}$$

(b) 
$$y = \frac{f(x)}{x}$$
 (c)  $y = \frac{x}{f(x)}$ 

C 9. In Section 2.2 we proved the Power Rule for positive integer exponents. Use the Quotient Rule to deduce the Power Rule for the case of negative integer exponents; that is, prove that

$$\frac{d}{dx}(x^{-n}) = -nx^{-n-1}$$

when n is a positive integer.

## THE CHAIN RULE

Although we have learned to differentiate a variety of functions, our differentiation rules still do not enable us to find the derivative of the function

$$F(x) = \sqrt{2x^2 + 3}$$

Notice that F is a composite function; it can be built up from simpler functions. If we let

$$y = f(u) = \sqrt{u} \text{ and } u = g(x) = 2x^2 + 3$$

$$f(x) = f(2x^2 + 3) = \sqrt{2x^2 + 3} = F(x)$$

then 
$$f(g(x)) = f(2x^2 + 3) = \sqrt{2x^2 + 3} = F(x)$$