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2.6 THE CHAIN RULE

Find an equation of the tangent line to the curve at the given point.
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Iff(2) = 3, f'(2) =5, g(2) = —1,and g'(2) = —4, find (QF(Z).

with

Show that there are no tangents to the curve y = At 4
X

positive slope.

. . x5 .
At what points on the curve y = 15 is the tangent line

horizontal?
Find the points on the curve y = T where the tangent line is
. ¢ Y -

parallel to the line x + 4y = 1.
If f is a differentiable function, find expressions for the derivatives
of the following functions.
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In Section 2.2 we proved the Power Rule for positive integer
exponents. Use the Quotient Rule to deduce the Power Rule for the
case of negative integer exponents; that is, prove that

d .
— (X_") —_ _nx—-n—l

dx

when n is a positive integer.

Cthen  fg(x) = f2? + 3) = V2 + 3 = F(x)

Although we have learned to differentiate a variety of functions, our
differentiation rules still do not enable us to find the derivative of the
function

Fx) = V2 + 3
Notice that F is a composite function; it can be built up from stmpler

functions. If we let
J’=f(u)=\/a and u = gx) = 2% + 3




