Lesson Context

BIG PICTURE of this UNIT:	 How do algebraically & graphically work with growth and decay applications? What are logarithms and how do we invert or undo an exponential function? How do we work with simple algebraic and graphic situations involving the use of logarithms (or inversing exponentials?) 		
	Where we've been	Where we are	Where we are heading
CONTEXT of this			
LESSON:	We have seen algebra skills related to the	What are & How do work	How do work with the
	parent exponential function $f(x) = AB^x$	with the inverse of	mathematically model
	in Lesson 1 zand we've worked with	exponential functions?	$f(x) = AB^{k(x+c)} + d?$
	Inverses in SEM 1		

Lesson Objectives: (B)

- a. How can we summarize number patterns associated with logarithmic & exponential relationships?
- b. Convert between exponential & logarithmic forms of numerical expressions
- c. Solve simple logarithmic equations using fundamental knowledge of exponents

EXPLORATION #1: Looking for PATTERNS

Consider the following logarithmic equations below → explain what is happening/going on in all these equations

$$\log_{5} 25 = 2$$

$$\log_7 1 = 0$$

$$\log_2 8 = 3$$

$$\log_6 36 = 2$$

$$\log_{5} 25 = 2$$

$$\log_7 1 = 0$$
 $\log_2 8 = 3$ $\log_6 36 = 2$ $\log_5 25 = 2$ $\log_3 81 = 4$

$$\log_4 64 = 3$$

$$\log_2 32 = 5$$

$$\log_5 25 = 2$$

$$\log_2 32 = 5$$
 $\log_5 25 = 2$ $\log_{12} 144 = 2$

$$\log_4 2 = \frac{1}{2}$$
 $\log_2 \left(\frac{4}{9}\right) = 2$

$$\log_{125} 5 = \frac{1}{3}$$

$$\log_9 3 = \frac{1}{2}$$

$$\log_8 2 = \frac{1}{3}$$

$$\log_2 \frac{1}{16} = -4$$

$$\log_{125} 5 = \frac{1}{3}$$
 $\log_9 3 = \frac{1}{2}$ $\log_8 2 = \frac{1}{3}$ $\log_2 \frac{1}{16} = -4$ $\log_{243} 27 = \frac{3}{5}$ $\log_8 4 = \frac{2}{3}$

$$\log_2 \frac{1}{8} = -3$$

$$\log_9 \frac{1}{81} = -2$$

$$\log_3 \frac{1}{27} = -3$$

$$\log_{\frac{3}{5}}\left(\frac{25}{9}\right) = -2$$

$$\log_2 \frac{1}{8} = -3$$
 $\log_9 \frac{1}{81} = -2$ $\log_3 \frac{1}{27} = -3$ $\log_{\frac{3}{5}} \left(\frac{25}{9}\right) = -2$ $\log_{27} \frac{1}{3} = -\frac{1}{3}$ $\log_{128} \frac{1}{2} = -\frac{1}{7}$

(D) Application: Solving Logarithmic Equations

Given the pattern you found in Part C, evaluate & solve the following logarithmic expressions/equations

Evaluate the following logarithmic expressions

Solve the following logarithmic equations

$$\log_{5} 125 =$$

$$\log_{x} 32 = 5$$

$$\log_2 \frac{1}{16} =$$

$$\log_3 x = 3$$

$$\log_2 \frac{1}{128} =$$

$$\log_3 81 = x$$

$$\log_5 x = -2$$

$$\log_{4} 256 =$$

$$\log_6 x = 2$$

$$\log_3 \frac{1}{243} =$$

$$\log_9 x = \frac{1}{2}$$

$$4\log_{2} 4 =$$

$$\log_{5} 0.04 = x$$

$$\log_2 64 =$$

$$\log_2 \frac{1}{x} = 4$$

$$\log_{\frac{1}{6}} 36 =$$

$$\log_x 2 = \frac{1}{3}$$

$$2\log_4 2 =$$

$$\log_{x} 256 = -4$$

More examples at:

More examples at:

http://www.mathworksheets4kids.com/logarithms/evaluating-expressions-level1-easy2.pdf (EASY)

http://www.mathworksheets4kids.com/logarithms/solv e-level1-easy2.pdf (EASY)

http://www.mathworksheets4kids.com/logarithms/evaluating-expressions-level2-medium1.pdf (MEDIUM)

http://www.mathworksheets4kids.com/logarithms/solve-level1-medium2.pdf (MEDIUM)

http://www.mathworksheets4kids.com/logarithms/evaluating-expressions-level2-hard2.pdf (HARD)

http://www.mathworksheets4kids.com/logarithms/solve-level2-medium2.pdf (HARD)

(E) Converting Forms → between Exponential & Logarithmic

Given the following examples → convert all log equations to equivalent exponential equations & vice versa (convert exponential equations into equivalent logarithmic equations

1)
$$\log_{16} 256 = 2$$

2)
$$\log_9 81 = 2$$

21)
$$4^{\frac{1}{2}} = 2$$

22)
$$3^5 = 243$$

3)
$$\log_2 \frac{1}{8} = -3$$

4)
$$\log_5 25 = 2$$

23)
$$14^{-2} = \frac{1}{196}$$

24)
$$18^2 = 324$$

5)
$$\log_{20} 400 = 2$$

6)
$$\log_{17} 289 = 2$$

25)
$$3^3 = 27$$

26)
$$\left(\frac{1}{6}\right)^3 = \frac{1}{216}$$

7)
$$\log_{13} 169 = 2$$

8)
$$\log_5 125 = 3$$

27)
$$14^2 = 196$$

28)
$$36^{-\frac{1}{2}} = \frac{1}{6}$$

9)
$$\log_9 \frac{1}{81} = -2$$

10)
$$\log_{169} 13 = \frac{1}{2}$$

30)
$$17^2 = 289$$

11)
$$\log_y x = \frac{2}{3}$$

12)
$$\log_y 76 = x$$

29)
$$6^3 = 216$$

Further Examples

http://www.mathworksheets4kids.com/logarithms/log-exp-form-num1.pdf

http://www.mathworksheets4kids.com/logarithms/log-exp-form-var1.pdf

(F) Working with our TI-84 → Evaluating Log & Exponent Expressions & Equations

Using the logbase key on the TI-84, for each of the following log expressions, (i) evaluate the expression and then write the exponential equation that would have created the given log expression.

Use a calculator to approximate each to the nearest thousandth.

635)	log	33
000)	105	00

662)
$$\log_2 -8.3$$

(G)Summary

- (i) Equivalence of Exponential & Logarithmic equations →
- (ii) Key Terminology →

Natural Logarithms

- 1. Verify ln(1) = 0
- 2. Verify ln(2.718281828) = 1 approximately. You calculator may round to 1.
- 3. **Experiment**: Calculate the natural logarithm of 2.7, 2.71, 2.718, 2.7182, and so on. See how the values approach or get closer and closer to 1.
- 4. Evaluate ln(2) =
- 5. Evaluate ln(3) =
- 6. Evaluate $\ln(6) =$
- 7. Evaluate ln(2) + ln(3) ln(6) =
- 8. Evaluate ln(0.5)
- 9. Evaluate ln(1/2)
- 10. Evaluate ln(1/3)
- 11.Evaluate ln (4)
- 12. Evaluate $\ln (1/4) =$
- 13.Evaluate ln (1.25) + ln (0.8)
- 14.Evaluate ln(10)
- 15. Evaluate $\ln (5)/\ln(10) = \ln(5)$ divided by $\ln(10)$.
- 16.Use the log button on your calculator to compute log(5). That should give the same result as ln(5)/ln(10).
- 17. Evaluate $ln(2^5) 5 ln(2)$

http://www.mathworksheets4kids.com/logarithms/solving-expressions-calc-natural3.pdf

http://www.mathworksheets4kids.com/logarithms/solving-expressions-calc-natural2.pdf

http://www.mathworksheets4kids.com/logarithms/solving-expressions-calc-common3.pdf