
\qquad
\qquad
\qquad

Levels of Performance - RTT

- Level $1 \rightarrow$ You can successfully get through geometric \& applied problems wherein only ONE triangle is present (below grade level) \qquad
- Level $2 \rightarrow$ You get through geometric \& applied problems wherein TWO triangles are present (at grade level), but success is occasional OR some assistance is required
- Level $3 \boldsymbol{\rightarrow}$ You can successfully get through geometric \& applied problems wherein TWO triangles are present (at grade level)

3/1/15
IM3-Santowski
(A) Review of Right Triangles \qquad

- In a right triangle, the primary trigonometric ratios (which relate pairs of sides in a ratio to a given reference angle) are as follows
- sine A = opposite side/hypotenuse side
- cosine A = adjacent side/hypotenuse side
- - tangent $A=$ opposite/adjacent side side
- recall SOHCAHTOA as a way of remembering the trig. ratio and its corresponding sides

3/1/15
IM3- Santowski

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(A) $\underset{\text { skills }}{\text { Basics }}$ - Solve for Angle - Level 1

1. For he following right triangles. find the neasure of each angle, x, to the nearest tegree: \qquad

\qquad
(c)

\qquad
\qquad
\qquad
3/1/15
IM3-Santowski

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

Examples - RTT - Level 1

- For more Level 1 work, go to any/some/all of the following links to continue practicing:
(a) Link \#1 \& work through Q on pg 5-6
(b) Link \#2 \& work through Q on pg 2-5
(c) Link \#3 \& work through Q on pg 1-3 \qquad
\qquad

3/1/15
IM3-Santowski \qquad

Guidelines for PROPER Presentation of Solutions \qquad

- Your solution MUST have: \qquad
- (1) properly labeled diagram
- (2) state what triangle you are working in and what you are hoping to determine in that triangle
- (3) your actual working should in the very least show (i) correct substitution into eqn showing what trig ratio(s) you are working in and (ii) the answer for that triangle \qquad
- (4) repeat steps $2 \& 3$ for your second triangle
- (5) your final answer, coming from your working in the two triangles

3/1/15
IM3- Santowski

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Examples - RTT - L2/L3

- (1) Diagram (already done)
- (2) In $\triangle A B C$, find $m A C$
- (3) $\cos (46)=55.0 / A C \rightarrow m A C=\quad 3$. Find the length of $A D$. Show the steps of your solution. 79.1756 m
- (4) in $\triangle A C D$, find $m A D$
- (4) $\sin (55)=79.1756 / \mathrm{AD} \rightarrow$ mAD $=96.7 \mathrm{~m}$
- (5) conclusion $\rightarrow \mathrm{mAD}$ is 96.7 m
L
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\overline{3 / 1 / 15}
$$

M3 - Santowski
\qquad

Examples - RTT - L2/L3
4. Find the measure of $\angle \theta$, to the nearest tenth of a degree.

- a)

\qquad
\qquad
\qquad
\qquad
c)

3/1/15
IM3 - Santowski

\qquad

Examples - RTT - L2

- To determine the width of a river, a surveyor marks a point on the bank of the river, A. Her partner is standing directly across the river from her at point C . The surveyor then walks 100 m downstream to point B, where she now has a line of sight to her partner at an angle of 58° relative to the river bank. Determine the width of the river.
- (L2 because YOU need to put together the diagram)

3/1/15
IM3-Santowski
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A forest ranger in a tower 128.0 m high sights two fires in the same line of sight with angles of depression 42° and 61°. How far apart are the fires?
6 From a window 26.0 m above the ground, the angle of elevation of the top of a building is 39°, while the angle of depression to the bottom of the building is 29°. How high is the building?
7 A helicopter, directly above a building, sights a position, A , on the ground at an angle of depression of 38°. The helicopter then rises vertically above the building, a distance of d, in metres, and sights position A , now at an angle of depression of 52°. If point A is 352.0 m from the building, how far has the helicopter risen?
3/1/15
IM3-Santowski
\qquad
\qquad

Examples - RTT - L2/L3

8 The angle of elevation of the top of a building from a point, A, 56.0 m from the building is 58°. A flagpole is on top of the building. The angle of elevation from point A to the top of the flagpole is 62°. What is the length of the flagpole?

9 Two spotlights are placed 10.0 m apart on the same line of sight. The blue spotlight makes an angle of elevation of 45° and hits the bottom of a mirrored all. The white spotlight makes an angle of elevation of 70° and hits the same area. What is the height of the bottom of the ball?

10 For the diagram, prove that $h=\frac{d}{\cot \alpha-\cot \theta}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad

Examples - RTT - L3

- While driving towards a mountain, Mr S notices that the angle of elevation to the peak is 3.5°. He continues to drive to the mountain and 13 miles later, his second sighting of the mountain top is 9°. Determine the height of the mountain.

Examples - RTT - L3
- For further examples of problems at Level 3,
follow this link and work through the Q on pages 2-6 m//15

\qquad

