(A) Lesson Context

BIG PICTURE of this UNIT:	 mastery with algebraic skills to be used in our work with co-ordinate geometry (midpoint, length, slope) understanding various geometric properties of quadrilaterals & triangles how do you really prove that something is "true"? 				
CONTEXT of this LESSON:	Where we've been You know about geometric figures and now you know how to find a midpoint	Where we are Becoming proficient with another analytical tool that we can use in co-ordinate	Where we are heading How can I prove various geometric properties of quadrilaterals and triangles?		
	now to find a mapoint	geometry → length	quadriaterals and triangles:		

(B) Lesson Objectives:

- a. Exploring the midpoint of a line segment through dynamic geometry software (geogebra)
- b. Develop proficiency in analytic/algebraic determination of midpoints of line segments
- c. Apply the use of midpoints to problem solving questions

(C) Exploring Length – through dynamic geometry software: geogebra

Open Firefox, Explorer, Safari (but NOT CHROME) - Using the following dynamic geometry applet (http://www.geogebratube.org/student/m12412), (you may have to download JAVA) let's explore the length of a line segment

> i. Point A is fixed at (0,0) and move Point B (the first three B coordinates have been given to you. Record position of Point B and then aslo record the length of the segment → Q? how can you determine the length of segment?

Midpoint and Length of a Line Segment

Point A	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)	(0,0)
Point B	(8,6)	(-15,8)	(-12,-5)			
Length						

Lesson 2: Length of a Line Segment | Unit 2 – Co-ordinate Geometry

ii. Now Point A will also move and you will also move Point B → Record position of Points A and B and then aslo record the length of the segment \rightarrow Q? how can you determine the length of segment?

Point A	(2,5)	(3,6)	(-5,-4)	(-2,-8)	(3,7)	(0,-7)
Point B	(4,7)	(0,-2)	(7,-1)	(-8,6)	(-4,2)	(5,0)
Length						

Q? how can you determine the length of segment?

(D) Working with the Formula

- a. The formula to find the length of a line segment between two points on a graph is $l = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$
 - i. Determine the length of the line segment between A(1,1) and B(5,9)
 - ii. Determine the length of the line segment between A(-1,1) and B(5,5)
 - iii. Determine the length of the line segment between A(-2,6) and B(3,-4)
 - iv. Determine the length of the line segment between A(1,-2) and B(8,-2)
- b. A helicopter is travelling from Town A to Town B. A grid is overlaid on the map of this region and Town A is at (-70,770) and Town B is at (220,490) & Town C is the origin.
 - 1. Draw a diagram that shows the three towns.
 - 2. Approximately how far did the helicopter travel?
 - 3. What assumption did you make about the route of the helicopter?

- c. Triangles can be classified according to the lengths of their sides (scalene, isosceles, equilateral). A given triangle has vertices at A(4,5), B(1,2) & C(6,1).
 - 1. Determine the lengths of all three sides and then classify the triangle type.
 - 2. Construct the triangle on GEOGEBRA.
 - 3. Where would you move point C such that you now had an isosceles triangle?

iii. CHALLENGE: Now Point A will be fixed at (16,-8) and you will have to move Point B to get to the requested length → Record the final position B → Q? how can you predict where Point B should be?

Point A	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)	(16,-8)
Length	10	13	17	5	21.9	28.2	30
Point B							

d. A line segment has an endpoint at A(5,2) and has a length of 13 units. Determine the co-ordinate(s) of the other endpoint. Show the algebraic reasoning/work that leads to your conclusion.

(E) Homework/Resources