(A) Lesson Context

BIG PICTURE of this UNIT:	 mastery with algebraic manipulations/calculations involving linear systems proficiency in working with graphic and numeric representations of linear systems proficiency in working with linear systems in real world scenarios 		
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading
	In Lesson 7, we reviewed graphic methods for solving linear systems	Consolidating skills in solving a linear systems algebraically	Mastery of solving & applying linear systems

(B) Lesson Objectives:

- a. Consolidate skills involved when solving linear systems using the substitution & elimination methods.
- b. Solve word problems modelled by linear systems using algebraic methods

(C) Skill Consolidation – FAST FIVE

a. Isolate the y term in the following equations:

(i)
$$2x - y = 7$$

(ii)
$$3x + y = 12$$

(iii)
$$3x - 2y = 6$$

(iii)
$$3x - 2y = 6$$
 (iv) $5x + \frac{1}{2}y - 2 = 0$

b. Isolate the *x* term in the following equations:

(i)
$$x - 5y = 7$$

(ii)
$$-3x + y = 12$$

(iii)
$$5x - 2y = 6$$

(iv)
$$0.25x + y - 2 = 0$$

c. Simplify and solve the following expressions

(i)
$$3x + (x-3) = 9$$

(ii)
$$-4y + 3(2y - 5) = 12$$

(iii)
$$2x - (x - 2) = 5$$

(D)SUBSTITUTION Examples: Solve and verify the following linear systems:

(i) $y = 2x - 4$ and $y = -x + 5$	Algebraic Verification:	Graphic Verifica	ation:
		y.	
(ii) $2x + 3y - 9 = 0$ and $y = -x - 2$	Algebraic Verification:	Graphic Verifica	ation:
		y	
(iii) $y = 5x - 2$ and $6x + 3y = 36$	Algebraic Verification:	Graphic Verifica	ation:
		y (

(iv) Solve the system
$$4x + 2y = 10$$
$$3y - 6x = 9$$

Algebraic Verification:

Graphic Verification:

(E) FASTER FIVE: Decide what operation – addition or subtraction – would result in the elimination of a variable.

$$9x + y = 4$$
$$14x + y = -1$$

$$3x - y = 50$$

 $12x + y = 115$

$$-7x - 6y = 338$$

 $-9x + 6y = -366$

$$18x - 5y = 454$$

 $12x - 5y = 316$

$$19x + 2y = 102$$

 $19x - 2y = 50$

$$17x - 8y = 323$$

 $6x + 8y = 114$

$$9x - 4y = 235$$

 $15x + 2y = 409$

$$7x - 16y = 441$$

 $7x - 17y = 476$

$$5x - 3y = 188$$

 $6x - 11y = 344$

(F) ELIMINTION Examples: Solve and verify the following linear systems:

(i)	2x - 2y - 14 = 0
	2x - 2y - 14 = 0 $-2x + 4y - 4 = 0$

Algebraic Verification:

Graphic Verification:

y.	•
	, x

(ii)
$$3x - 2y = 17 -6x - 2y = 8$$

Algebraic Verification:

Graphic Verification:

y•	
	x

(iii)
$$y + 4x = 9$$

 $3y - 6x = 9$

Algebraic Verification:

Graphic Verification:

(iv)
$$6x + 2y = -4$$

 $3x + y = 1$

Algebraic Verification:

Graphic Verification:

(v) Solve the system 4x + 2y = 103y - 6x = 9

Algebraic Verification:

Graphic Verification:

y ·	
	×

(G)Application of Linear Systems

❖ Ex 1. Guarantee Pool Repair Services charges \$50 for a service call and \$40/hour for labour. Oasis Pools and Spas charges \$30 for a service call plus \$45 for labour. Find the length of a service call for which both companies charge the same amount

EXPLAIN WHAT: the two variables should represent → let x be let y be

EXPLAIN WHY: the 2 equations are \Rightarrow y = 50 + 40x as well as y = 30 + 45x

Ex 2. Regina is training for the upcoming cross country season. She needs to design a daily 45 minute workout using a combination of a stationary bike and a treadmill. To be in top shape, she should burn 400 calories in her workout. On a bike, she burns 8 cal/min and on the treadmill she burns 10 cal/min. How many minutes should she train on each piece of equipment?

EXPLAIN WHAT: the two variables should represent → let x be let y be

EXPLAIN WHICH PAIR OF EQUATIONS ARE CORRECT:

option (1)
$$\rightarrow$$
 x + y = 400 as well as 8x + 10y = 45

option (2)
$$\rightarrow$$
 x + y = 45 as well as 8x + 10y = 400

Ex 3. As the owner of a banquet hall, you are in charge of catering a reception. There are 2 dinners: a chicken dish that costs \$16 and a beef dish that costs \$18. The 300 wedding guests have ordered the dinners in advance and the total cost to prepare the dinners is \$5256. How many of each type of dinner are you preparing?

EXPLAIN WHAT: the two variables should represent → let x be let y be

EXPLAIN WHICH PAIR OF EQUATIONS ARE CORRECT:

option (1)
$$\rightarrow$$
 x + y = 300 as well as $16x + 18y = 5256$

option (2)
$$\rightarrow$$
 x + y = 5256 as well as $16x + 18y = 300$

❖ Ex 4. You are selling tickets for a musical at ISM. Student tickets cost \$5 and general admission tickets cost \$8. If you sell 500 tickets and collect \$3475, how many student tickets and how many general admission.