(A) Lesson Context

BIG PICTURE of this UNIT:	 What is meant by the term FUNCTIONS and how do we work with them? mastery with working with basics & applications of linear functions mastery with working with basics & applications of linear systems understanding basics of function concepts and apply them to lines & linear systems 				
CONTEXT of this LESSON:	Where we've been In Lesson 5, you graphed data sets as scatter plots & wrote linear functions for the trend line of those data set	Where we are Writing equations of lines in multiple forms & continuing to put linear functions into context.	Where we are heading Mastery of working with multiple representations of f(x) = mx + b		

(B) Lesson Objectives:

- a. Continue working with equations of linear relations written in the form of y = mx + b
- b. Continue working with equations of linear relations written in the form of $y y_1 = m(x x_1)$
- c. Introduce how we can work with equations of linear relations written in the form of Ax + By = C
- d. Continue working with equations of linear relations in real world applications

(C) Review Exercise: FAST FIVE

- a. Determine the equation of the line in the diagram. Write the equation in:
 - i. Slope-intercept form
 - ii. Standard/general form
 - iii. Slope-point form

- b. Is the point (6,5) on the line? Show your reasoning.
- c. Verify on technology use your TI-84 and then use DESMOS

(D) Review Exercise: FASTER FIVE (hahahahaha)

- a. Determine the equation of the line in the diagram. Write the equation in:
 - i. Slope-intercept form
 - ii. Standard/general form

iii. Slope-point form

b. If the y value in this relation was -7, what is the x co-ordinate? Show your reasoning/work.

(E) Review Exercise #3:

- (a) (GREEN LEVEL) Determine the equation of the line that passes through A(5,-2) and B(-1,-6). Write the equation in all three forms.
- (b) (BLUE LEVEL) Determine the equation of the line that passes through the point A(5,-2) and B(a,b). Write the equation in all three forms.

(F) Applying the Basic Skills: - Ex 1. → House Values

Data Table: Verbal Description: Mr Santowski has a summer cottage for which he paid У \$120,000. Each year, the value of the house increases by \$8,000. Graph: Equation: -192000 -176000 -160000 Slope: -144000 -128000 Meaning of Slope: -112000 -9600 -80000 Y-intercept: -64000 -4800 Meaning of y-intercept: -32000 Questions:

- (a) When will my cottage be worth \$200,000?
- (b) What will be the value of my cottage in 4 years time?
- (c) When will the value of my cottage be double its original value?
- (d) At what rate is the value of the house changing from year to year?
- (e) Write the equation in standard form.
- (f) What is the x-intercept and what does it mean?
- (g) Write the equation in point-intercept form

(G)Applying the Basic Skills: Ex 2: → Commission

Verbal Description:	Data Table:					
John works at a clothing store and his weekly salary is \$300	sales 0 1000 2000 3000 4000 5000)				
and he earns 5% commission on his weekly sales.	earnings					
Graph:	Equation:					
1100 y						
900						
-800700	Slope:					
-600	Meaning of Slope:					
-500 - 400	Y-intercept:					
	Meaning of y-intercept :					
1000 2000 3000 4000 5000 6000 7000 80						

Questions:

- (a) When will John's earnings be \$700?
- (b) What will be John's earnings if he sells \$6,525 worth of clothing?
- (c) John gets a raise in pay and now earns a base salary of \$500, but his commission remains at 5% of total sales. Write a new equation and graph it on the grid. What is similar about the 2 graphs? What is different about the 2 graphs.
- (d) John now gets a raise in pay. He stills earns a base salary of \$300, but his commission is now 7.5% Write a new equation and graph it on the grid. What is similar about the 2 graphs? What is different about the 2 graphs.
- (e) John now gets promoted to Store Manager and earns a weekly salary of \$1100. and graph it on the grid. What does this graph look like?

(H)Applying the Basic Skills → Geometry Problems → Perimeter of a rectangle

Verbal Description:	Data Table: List some possible values for the length and			
	width of the pens.			
Mr Santowski is constructing 2 adjacent, rectangular pens to				
contain puppies, as illustrated below. I have 24 meters of	length			
fencing material available.	No. 111			
	Width			
<u> </u>				
Graph:				
	Equation:			
Width				
12				
10				
9				
8	X-intercept:			
7				
6	Meaning of x-intercept:			
5				
4	Y-intercept:			
	Meaning of y-intercept :			
Length				
2 4 6 8 10				
Questions:				

- Write the equation in standard form.
- Write the equation in slope-intercept form.
- What does the slope mean in this question?
- d. Which form do you find easiest for this problem? Why?
- e. State the domain and range of this function and explain your thinking.

(I) Piecewise Relations: Exploratory Example:

- a. A long distance calling plan charges \$1.29 for any call up to 20 minutes in length and 7 cents for each additional minute (or each part of a minute)
 - i. What is the independent variable (input)? What would the domain be?
 - ii. What is the dependent variable (output)? What would the range be?
 - iii. Would you expect this relation to be a function? Why/why not?
 - iv. Determine the cost of a 52 minute phone call.
 - v. How long would a call be if you had to pay \$2.41.
 - vi. To help draw a graph, complete the following table of values. Then graph this relation.

Time (min)	0	5	10	15	20	25	30	35	40
Cost (\$)									

Now, how would you write an equation for this relation?

