A. Lesson Context

BIG PICTURE of this UNIT:	 What is meant by the t mastery with working 	What is meant by the term FUNCTIONS and how do we work with them? mastery with working with basics & applications of linear functions				
	mastery with working	hastery with working with basics & applications of linear systems				
	 understanding basics of 	of function concepts and apply them to lines & linear systems				
	Where we've been	Where we are	Where we are heading			
CONTEXT of this LESSON:						
	In Lesson 3, you practiced	Using technology to produce	Mastery of working with			
	with stating the domain and	graphs of functions & then	multiple representations of			
	range of functions	apply various function	f(x) = mx + b			
		concepts				

B. Lesson Objectives

- a. Use technology (TI-84 and DESMOS) to generate graphs of functions.
- b. Use the graphs generated to apply various function concepts like domain, range, evaluate and solve

C. Fast Five (Skills Review Focus)

1.
$$\frac{5}{2}x + \frac{7}{5}x = -\frac{53}{10} + \frac{5}{4}x$$

4. $y - \frac{3}{2} = 2y - \frac{7}{3}$

$$2. -\frac{19}{6}\left(a + \frac{13}{5}\right) = \frac{81}{10} + \frac{3}{2}a$$

$$5. -\frac{4}{3}\left(\frac{2}{3}p - \frac{7}{4}\right) = -\frac{7}{2}\left(-\frac{16}{5}p + \frac{10}{3}\right) + \frac{10}{3}a$$

3.
$$6 - 10(m-6) = -9 + 5m$$

6. $-4(7n-6) = -48 - 10n$

D. Graphs of Functions

We will give you instructions on HOW to use graphing calculator as well as DESMOS in or prepare graphs of the functions and/or relative when presented with an EQUATION The most important part of this exercise will your VIEW WINDOW SETTINGS, so that you	 Dnce you generate a graph of a function, you will be to SKETCH a copy of the graph. Here is a list of the left that should appear in your sketches: The x- and y-axis Key points (usually x- and y-intercepts but a maximum and minimum points 	 Once you generate a graph of a function, you will be expected to SKETCH a copy of the graph. Here is a list of the key details that should appear in your sketches: The x- and y-axis Key points (usually x- and y-intercepts but also maximum and minimum points 			
graph of the function, rather than just empt	 Have the correct "shape" of the function Label the function with its equation 	 Have the correct "shape" of the function Label the function with its equation 			
EXAMPLE 1 \rightarrow Graph the function $f(x) = 4$ - From your graph (or from your calculator or algebra), determine the : Domain \rightarrow Range \rightarrow x-intercept \rightarrow y-intercept \rightarrow f(-2) = What value of x makes f(x) = -8?	x. om	Label the function with its equation			
EXAMPLE 2 \rightarrow Graph the function $f(x) = 2x$ From your graph (or from your calculator or algebra), determine the : Domain \rightarrow Range \rightarrow x-intercept \rightarrow y-intercept \rightarrow f(-4) = What value of x makes f(x) = 22?	8	X			

E. Graphs of Functions

EXAMPLE 3 \rightarrow Graph the function $f(x) = 12 + \frac{1}{3}x$.			
From your graph (or from your calculator or from algebra), determine the :			
Domain→ Range →			
x-intercept → y-intercept →			
f(6) =			
What value of x makes f(x) = -8?			
EXAMPLE 4 \rightarrow Graph the function $f(x) = 15$	5x+100.		
From your graph (or from your calculator or from algebra), determine the :			
Domain→ Range →			
x-intercept → y-intercept →			
f(10) =			
What value of x makes f(x) = 400?			
EXAMPLE 5 \rightarrow Graph the function $f(x) = x$	+3 on the		
domain $\{x \in R x \leq 5\}$.			
From your graph (or from your calculator of algebra), determine the :	from		
Domain→ Range →			
x-intercept → y-intercept →			
f(-4) =			
What value of x makes f(x) = 10?			

F. Graphs of Functions

EXAMPLE 6 \rightarrow Graph the function $f(x) = -\frac{1}{2}x - 4$ on	
the range $\{y \in R y > -8\}$.	
From your graph (or from your calculator or from algebra), determine the :	
Domain→ Range →	
x-intercept → y-intercept →	
f(6) =	
What value of x makes $f(x) = -8$?	
EXAMPLE 7 \rightarrow Graph the function $f(x) = 3x + 10$ on	
the range $\{x \in R \mid -5 \le x < 5\}$.	
From your graph (or from your calculator or from algebra), determine the :	
Domain→ Range →	
x-intercept → y-intercept →	
f(3) =	
Solve for x if $f(x) = -2$?	
EXAMPLE 8 \rightarrow Graph the function $f(x) = 4 - x^2$ on	
the domain $\left\{ x \in \mathbb{R} \mid -3 < x \le 6 \right\}$.	
From your graph (or from your calculator or from algebra), determine the :	
Domain→ Range →	
x-intercept → y-intercept →	
f(4) =	
Solve f(x) = 7	