A. Lesson Context

	What is meant by the term FUNCTIONS and how do we work with them?				
BIG PICTURE of this UNIT:	 mastery with working with basics & applications of linear functions 				
	 mastery with working with basics & applications of linear systems 				
	 understanding basics of function concepts and apply them to lines & linear systems 				
	Where we've been	Where we are	Where we are heading		
CONTEXT of this LESSON:					
	In Grade 8, you studied	What do we mean by the term	Mastery of working with		
	linear RELATIONS &	"functions" and how do linear	multiple representations of		
	you've heard the terms	relations from Grade 8 fit into this	f(x) = mx + b		
	domain and range	bigger understanding?			

B. Lesson Objectives

- a. Work with number patterns to revisit the "rule of four" or multiple representations
- b. Introduce fundamental concepts related to Functions → relations, functions, domain, range, notations
- c. Review basic algebra about linear relations

C. Fast Five (Skills Review Focus)

a. Solve
$$3x + 5 = 15 - 2x$$

b. Solve
$$3(2-x) = -(x-2)$$

c. Evaluate
$$4^{-2} - 2^{-3}$$

d. Evaluate
$$(x-4)(3-2x)$$
 when $x=2$

e. Find the slope of the line through
$$A(2,5)$$
 and $B(6,-3)$.

f. Find the equation of the line through
$$A(2,5)$$
 and $B(6,-3)$.

g. Graph the line through
$$A(2,5)$$
 and $B(6,-3)$.

D. Working with Number Patterns

a. We will work with something "familiar" (linear relations) in order to create some new understandings (multiple representations) and explore/introduce some new concepts (functions).

VERBAL (V)	NUMERIC (N)		
Our relation will be defined by the following verbal description:	Table of Values	Mapping Diagram	Ordered Pairs
To "create/generate" a new value, a number is doubled and then increased by four.	х у		
The CONDITION on the number is that it must be a real number between and including 0 and 10.			
ALGEBRAIC (A)	GRAPHIC (G)		
	24 -22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -22		x x 11_1

b. REVIEW from Grade 8 Math

- i. What is the SLOPE of this line?
- ii. What does slope MEAN?
- iii. What are the x- and y-intercepts of this line?

E. Working with Number Patterns

F. REVIEW from Grade 8 Math

- i. What does the term "relation" mean?
- ii. What is the domain of this relation?
- iii. What is the range of this relation?

G. NEW CONCEPT: Function Basics

b. Relations:

- i. A "relation" is just a relationship between sets of information;
- ii. A relation refers to a set of input and output values, usually represented in ordered pairs
- iii. A relation is simply a set of ordered pairs.

c. Functions:

- i. A function is a "well-behaved" relation → When we say that a function is "a well-behaved relation", we mean that, given a starting point, we know exactly where to go; given an x, we get only and exactly one y.
- ii. Function is a relation in which each element of the domain is paired with exactly one element of the range.
- iii. A function is a set of ordered pairs in which each x-element has only ONE y-element associated with it.
- iv. A function is a rule that takes an input, does something to it, and gives a unique corresponding output.

d. Notations:

- i. Rather than writing linear equations in the typical y = mx + b format, we will now write them in function notation \rightarrow as f(x) = mx + b where "f" simply refers to the function name and the x refers to the input
- ii. Evaluate \rightarrow if f(x) = 2x + 4, then we can evaluate f(3) as
- iii. Solve \rightarrow if f(x) = 2x + 4, then we can solve 12 = f(x) as

e. <u>Understanding Domain and Range:</u>

- i. The set of all the starting points is called "the domain" and the set of all the ending points is called "the range."
- ii. The domain is what you start with; the range is what you end up with.
- iii. The domain is the x's; the range is the y's

H. Further Examples: Working with Functions in Contextual Applications

VERBAL (V) **NUMERIC (N)** Our function will be defined by the **Ordered Pairs** Table of Values Mapping Diagram following verbal description: Years Salary Mr. S works at CAC and earned a worked base salary of \$40,000 in his first year and then he receives an annual bonus of \$2,000 for each additional year he works here. **ALGEBRAIC (A) GRAPHIC (G)** pay in thousands \$ 72 64 56 48 40 24 years worked **NEW CONCEPTS: Functions** Domain of S(y): Represents → Range of S(y): Represents → S(6) → Evaluate & interpret $$56,000 = S(y) \rightarrow Solve and interpret$

I. Further Examples: Working with Functions Graphically

J. Working with Functions using Graphic Representations

K. Working with Functions using Graphic Representations

L. ADVANCED LEVEL: Working with NON-LINEAR Functions in Contextual Applications

VERBAL (V)

Our function will be defined by the following verbal description:

Mr. S started with 196 M&M's in a bag and he invited students to come by, one at a time, to remove HALF of the remaining M&Ms from the bag.

NUMERIC (N)

Table of Values

Student	M&Ms
0	196

Mapping Diagram

Ordered Pairs

ALGEBRAIC (A)

N(s) will be a notation used to represent the idea of → Number of M&Ms in the bag as a function of the number of students who have come by to take M&Ms

GRAPHIC (G)

NEW CONCEPTS: Functions

Domain of N(s): Represents →

Range of N(s): Represents →

N(3) → Evaluate & interpret

 $12 = N(s) \rightarrow Solve$ and interpret

M. ADVANCED LEVEL: Working with NON-LINEAR Functions in Contextual Applications

VERBAL (V) **NUMERIC (N)** Our function will be defined by the **Ordered Pairs** Table of Values Mapping Diagram following verbal description/context: w A(w) Calculate the AREA of a rectangle if the perimeter of a rectangle is 36 m **ALGEBRAIC (A) GRAPHIC (G)** A(w) will be a notation used to 18 represent the idea of → Area as a 16 function of the width of the field 14 12 10 6 8 10 12 14 16 18 **NEW CONCEPTS: Functions** Domain of A(w): Represents → Range of A(w): Represents → A(4) → Evaluate & interpret $45 = A(w) \rightarrow Solve and interpret$

N. ADVANCED LEVEL: NON-LINEAR Functions With Graphic Representations

O. ADVANCED LEVEL: NON-LINEAR Functions With Graphic Representations

