Solving Proportions Worksheet

Name:
Date: \qquad

Each problem could be set up this way:

1. Write the proportion.

$$
\frac{8}{3}=\frac{192}{n}
$$

2. Write the cross products

$$
8 \cdot n=192 \cdot 3
$$

3. Multiply

$$
8 n=576
$$

4. Undo multiplication by using $\underline{8 n}=576$
division
88
5. Divide

$$
n=72
$$

Solve each proportion. Be sure to set it up the correct way and show all work.

1. $\frac{4}{9}=\frac{10}{x}$
2. $\frac{5}{2}=\frac{x}{6}$
3. $\frac{5}{2}=\frac{2}{x}$
4. $21=\underline{x}$
2718
5. $\underline{15}=20$
$21 y$
6. $\underline{b}=\underline{39}$
$26 \quad 9$
7. $\underline{h}=0.435$
8. $4.56=\frac{70}{w}$
9. $0.65=J$
15
10. $\frac{350}{p}=0.25$
11. $\frac{q}{1134}=0.95$
12. $1.75=\frac{z}{104}$

The Right Triangle Trigonometric Ratios - Although we won't prove this fact until a future geometry course, all right triangles that have a common acute angle are similar. Thus, the ratios of their corresponding sides are equal. A very long time ago, these ratios were given names. These trigonometric ratios (trig ratios) will be introduced through the following exercises, each of which refer to the diagram below.

In a right triangle:

$$
\text { tangent of an angle }=\frac{\text { leg opposite of the angle }}{\text { leg adjacent to the angle }}
$$

Exercise \#3: $\tan A=\quad \tan C=$

$$
\text { sine of an angle }=\frac{\text { leg opposite of the angle }}{\text { hypotenuse }}
$$

Exercise \#4: $\sin A=\quad \sin C=$

$$
\text { cosine of an angle }=\frac{\text { leg adjacent to the angle }}{\text { hypotenuse }}
$$

Exercise \#5: $\cos A=\quad \cos C=$

A Helpful Mnemonic For Remembering the Ratios:

SOH-CAH-TOA

Sine is Opposite over Hypotenuse - Cosine is Adjacent over Hypotenuse - Tangent is Opposite over Adjacent

Exercise \#3: Find each of the following ratios for the right triangle shown below.
(a) $\sin A=$
(b) $\tan B=$
(c) $\cos A=$
(d) $\tan A=$
(e) $\cos B=$
(f) $\sin B=$

\qquad

Similar Right Triangles - Introduction to Trigonometry Algebra 1 Homework

Skills

For problems $1-6$, use the triangle to the right to find the given trigonometric ratios.

1. $\cos \mathrm{N}=$
2. $\sin \mathrm{N}=$
3. $\tan \mathrm{N}=$

4. $\sin \mathrm{P}=$
5. $\cos \mathrm{P}=$
6. $\tan \mathrm{P}=$
7. Given the right triangle shown, which of the following represents the value of $\tan A$?
(1) $\frac{25}{24}$
(3) $\frac{7}{24}$
(2) $\frac{24}{7}$
(4) $\frac{24}{25}$

8. In the right triangle below, $\cos Q=$?
(1) $\frac{12}{5}$
(3) $\frac{12}{17}$
(2) $\frac{5}{12}$
(4) $\frac{12}{13}$

Kuta Software - Infinite Geometry

Trigonometric Ratios

Name \qquad
Date \qquad Period \qquad
Find the value of each trigonometric ratio.

1) $\tan Z$

2) $\cos C$

3) $\sin C$

4) $\cos A$

5) $\sin Z$

6) $\cos Z$

7) $\tan X$

8) $\sin A$

9) $\sin C$

10) $\tan C$

Find the value of each trigonometric ratio to the nearest ten-thousandth.

11) $\cos Z$

12) $\cos C$

13) $\tan A$

14) $\tan C$

15) $\sin Z$

16) $\sin 48^{\circ}$
17) $\cos 61^{\circ}$

Critical thinking questions:

23) Can the sine of an angle ever equal 2 ? Why or why not?
24) $\sin Z$
25) $\tan X$

26) $\cos 51^{\circ}$
27) $\sin x=\frac{1}{3}$

Find $\cos x$.
\qquad

Solving Right Triangles

Date \qquad Period

Find the missing side. Round to the nearest tenth.
1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

11)

12)

13)

14)

15)

16)

Critical thinking question:

17) Write a new problem that is similar to the others on this worksheet. Solve the question you wrote.
\qquad

Using Trigonometry to Solve for Missing Sides Algebra 1 Homework

Skill

In problems 1 through 3, determine the trigonometric ratio needed to solve for the missing side and then use this ratio to find the missing side.

1. In right triangle $A B C, m \angle A=58^{\circ}$ and $A B=8$. Find the length of each of the following. Round your answers to the nearest tenth.
(a) $B C$
(b) $A C$

2. In right triangle $A B C, m \angle B=44^{\circ}$ and $A B=15$. Find the length of each of the following. Round your answers to the nearest tenth.
(a) $A C$
(b) $B C$

3. In right triangle $A B C, m \angle C=32^{\circ}$ and $A B=24$. Find the length of each of the following. Round your answers to the nearest tenth.
(a) $A C$
(b) $B C$

4. Which of the following would give the length of hypotenuse $\overline{P R}$ in the diagram below?
(1) $8 \cos \left(24^{\circ}\right)$
(3) $8 \tan \left(24^{\circ}\right)$
(2) $\frac{8}{\cos \left(24^{\circ}\right)}$
(4) $\frac{8}{\tan \left(24^{\circ}\right)}$

Applications

5. An isosceles triangle has legs of length 16 and base angles that measure 48°. Find the height of the isosceles triangle to the nearest tenth. Hint - Create a right triangle by drawing the height.

6. Carlos walked 10 miles at an angle of 20° north of due east. To the nearest tenth of a mile, how far east, x, is Carlos from his starting point?

7. Students are trying to determine the height of the flagpole at Arlington High. They have measured out a horizontal distance of 40 feet from the flagpole and site the top of it at an angle of elevation of 52°. What is the height, h, of the flagpole? Round your answer to the nearest tenth of a foot.

