Solving Proportions Worksheet

Name: _____ Date: _____ Section: _____

Each problem could be set up this way:

1. Write the proportion.	<u>8</u> = <u>192</u>
	3 n
2. Write the cross products	8 · n = 192 · 3
3. Multiply	8n = 576
4. Undo multiplication by using	<u>8n</u> = <u>576</u>
division	8 8
5. Divide	n = 72

Solve each proportion. Be sure to set it up the correct way and show all work.

1. <u>4</u> = <u>10</u>	2. <u>5</u> = <u>×</u>	3. <u>5</u> = <u>2</u>
9 <i>x</i>	2 6	2 <i>x</i>

4. <u>21</u> = <u>x</u>	5. <u>15</u> = <u>20</u>	6. <u><i>b</i></u> = <u>39</u>
27 18	21 <i>y</i>	26 9

7. <u>h</u> = 0.435	8. 4.56 = <u>70</u>	9. 0.65 = _ <i>j</i>
108	W	15

10. <u>350</u> = 0.25	11. <u> </u>	12. 1.75 = <u>z</u>
p	1134	104

<u>The Right Triangle Trigonometric Ratios</u> – Although we won't prove this fact until a future geometry course, all right triangles that have a common acute angle are similar. Thus, the ratios of their corresponding sides are equal. A very long time ago, these ratios were given names. These trigonometric ratios (trig ratios) will be introduced through the following exercises, each of which refer to the diagram below.

A Helpful Mnemonic For Remembering the Ratios:

SOH-CAH-TOA

Sine is Opposite over Hypotenuse – Cosine is Adjacent over Hypotenuse – Tangent is Opposite over Adjacent

Exercise #3: Find each of the following ratios for the right triangle shown below.

- (a) $\sin A =$ (b) $\tan B =$
- (c) $\cos A =$ (d) $\tan A =$
- (e) $\cos B =$ (f) $\sin B =$

Similar Right Triangles - Introduction to Trigonometry Algebra 1 Homework

Skills

For problems 1 - 6, use the triangle to the right to find the given trigonometric ratios.

- 6. tan P =
- 7. Given the right triangle shown, which of the following represents the value of $\tan A$?

Trigonometric Ratios

Find the value of each trigonometric ratio.

1) $\tan Z$

3) sin *C*

5) $\cos A$

7) sin *Z*

9) cos *Z*

2) $\cos C$

Name_

4) tan *X*

6) $\sin A$

8) sin *C*

10) tan C

-1-

Date_

Period____

Find the value of each trigonometric ratio to the nearest ten-thousandth.

11) $\cos Z$

14) tan A

16) tan *X*

12) cos *C*

17) sin *Z*

Χ 30

19) sin 48°

21) cos 61°

Critical thinking questions:

23) Can the sine of an angle ever equal 2? Why or why not?

24)
$$\sin x = \frac{1}{3}$$

Find $\cos x$.

20) sin 38°

22) cos 51°

Solving Right Triangles

Find the missing side. Round to the nearest tenth.

7) ×/

63°

16

Date_____ Period____

Critical thinking question:

17) Write a new problem that is similar to the others on this worksheet. Solve the question you wrote.

Using Trigonometry to Solve for Missing Sides Algebra 1 Homework

Skill

In problems 1 through 3, determine the trigonometric ratio needed to solve for the missing side and then use this ratio to find the missing side.

- 1. In right triangle *ABC*, $m \angle A = 58^{\circ}$ and AB = 8. Find the length of each of the following. Round your answers to the nearest *tenth*.
- (a) *BC*
- (b) *AC*
- 2. In right triangle ABC, $m \angle B = 44^{\circ}$ and AB = 15. Find the length of each of the following. Round your answers to the nearest *tenth*.
- (a) *AC*
- (b) *BC*
- 3. In right triangle *ABC*, $m \angle C = 32^{\circ}$ and AB = 24. Find the length of each of the following. Round your answers to the nearest *tenth*.
- (a) AC
- (b) *BC*

4. Which of the following would give the length of hypotenuse \overline{PR} in the diagram below?

Applications

5. An isosceles triangle has legs of length 16 and base angles that measure 48°. Find the height of the isosceles triangle to the *nearest tenth*. Hint – Create a right triangle by drawing the height.

6. Carlos walked 10 miles at an angle of 20° north of due east. To the nearest tenth of a mile, how far east, *x*, is Carlos from his starting point? N

7. Students are trying to determine the height of the flagpole at Arlington High. They have measured out a horizontal distance of 40 feet from the flagpole and site the top of it at an angle of elevation of 52° . What is the height, *h*, of the flagpole? Round your answer to the nearest *tenth* of a foot.

