

3.6 Using Quadratic Regression to Find a Curve of Best Fit with a TI-83 Plus Calculator

The TI-83 Plus can draw a curve of best fit for data on a scatter plot. The calculator can also provide the equation of the quadratic relation for this curve.

This table gives the height of a baseball above the ground, from the time it was hit until it touched the ground.

Height of a Baseball After Being Hit

Time (s)	0	1	2	3	4	5	6
Height (m)	2	27	42	48	43	29	5

 Create a scatter plot by entering the time values into L1 and the corresponding height values into L2. Press STAT 1 to edit the lists.

step 1

2. Once you have entered all the values into the appropriate lists, create a scatter plot by turning on the first Stat Plot: press 2nd Y= 1 followed by ENTER.

Make sure that you have the Type set for a scatter plot (:) and that Xlist is L1 and Ylist is L2 as shown.

step 2

3. To see the graph press $\boxed{200M}$ $\boxed{9}$.

step 3

4. The data is clearly nonlinear. To find the equation of the curve of best fit you can use **quadratic** regression.

Press STAT and scroll over to CALC. Press 5 to enable QuadReg.

step 4

5. Enter the names of the lists you wish to analyze. Press 2nd 1, 2nd 2, VARS. Scroll over to Y-VARS, then press 1 followed by 1 again. This stores the equation of the curve of best fit in the equation editor under Y₁=. Press ENTER to display the results.

step 5

6. To display the curve of best fit press GRAPH. The coefficients a, b, and c define the general quadratic equation $y = ax^2 + bx + c$ for the curve of best fit. R^2 indicates the percentage of the data that is represented by this model.

step 6

For this relation, the approximate equation is $y = -4.90x^2 + 29.93x + 1.98$.

Practise 3.6

For each set of data, create a scatter plot and use quadratic regression to determine the equation of the curve of best fit.

(a)	х	-2	-1	0	1	2	3	4	5	6
	У	4	1	0	1	4	9	16	25	36

(b)	Х	-4	-3	-2	-1	0	1	2	3	4
	У	44	23	8	-1	-4	-1	8	23	44

(c)	Х	-1	0	1	2	3	4	5	6	7
	У	-12	-6	-2	0	0	-2	-6	-12	-20

(d) Time spent every day by teenagers watching television

Year	1989	1990	1991	1992	1993	1994	1995	1996	1997
Time (min)	189	195	196	190	187	185	182	169	174

Source: Nielsen Media Research