1) Lesson Objectives

- a) Review the key features of the graphs of quadratic relations
- b) Use a real world model to illustrate the meaning and relevance of the vertex, the zeroes, the y-intercept
- **2)** <u>CONCEPT REVIEW</u> → Features of the Graphs of Quadratic Relations.

Define/describe/explain the following and label them on the diagram

- i) Direction of opening
- ii) Vertex/optimum point/Max or Min point
- iii) Optimal value/max or min value
- iv) Zeroes/x-intercepts
- **v)** Y-intercept
- vi) Axis of Symmetry
- **vii)** Function concepts:
 - (1) Evaluate f(W)
 - **(2)** Solve W = f(x)
 - (3) Evaluate $f^{-1}(W)$
 - (4) Domain/Range
 - (5) Graphing
 - (6) Data tables

3) Modelling with Quadratic Relations

Ex 1 → Examine the graph of the quadratic relation below:

b) Ex 2 → Two parabolas each have zeroes of 1 and 11. One has a maximum value of 12, the other has a minimal value of -6. Sketch the 2 parabolas on the same axes.

c) CONNECTION TO ALGREBRA \rightarrow A relation is defined by the equation A(L) = 24L – L². For this relation:

- iv) Graph it on the GDC and determine the optimal value.
- v) Sketch the parabola, labeling the key features

- d) A soccer ball is kicked up into the air. The height of the soccer ball above the ground is approximated by the equation $h(t) = 30t 5t^2$, where h is height in meters and t is time in seconds.
 - i) What are the zeroes of the relation? What do they MEAN in the context of the problem?
 - ii) What are the co-ordinates of the vertex? What does it MEAN in the context of the problem?
 - iii) What is the height of the ball after 2 seconds?
 - iv) When does the ball reach a height of 40 m?
 - v) Use this information above to sketch the parabola, labeling the key features.
 - vi) Explain the *connection* between the features of the graph and the equation

4) <u>Homework:</u>