Syllabus

Syllabus content

Topic 1—Algebra

The aim of this topic is to introduce students to some basic algebraic concepts and applications.

	Content	Further guidance	Links
1.1	Arithmetic sequences and series; sum of finite arithmetic series; geometric sequences and series; sum of finite and infinite geometric series. Sigma notation.	Technology may be used to generate and display sequences in several ways. Link to 2.6, exponential functions.	Int: The chess legend (Sissa ibn Dahir). Int: Aryabhatta is sometimes considered the "father of algebra". Compare with al-Khawarizmi.
	Applications.	Examples include compound interest and population growth.	TOK: How did Gauss add up integers from 1 to 100? Discuss the idea of mathematical intuition as the basis for formal proof.
			TOK: Debate over the validity of the notion of "infinity": finitists such as L. Kronecker consider that "a mathematical object does not exist unless it can be constructed from natural numbers in a finite number of steps".
			TOK: What is Zeno's dichotomy paradox? How far can mathematical facts be from intuition?

9 hours

	Content	Further guidance	Links
1.2	Elementary treatment of exponents and logarithms. Laws of exponents; laws of logarithms.	Examples: $16^{\frac{3}{4}} = 8$; $\frac{3}{4} = \log_{16} 8$; $\log 32 = 5 \log 2$; $(2^3)^{-4} = 2^{-12}$.	Appl: Chemistry 18.1 (Calculation of pH). TOK: Are logarithms an invention or discovery? (This topic is an opportunity for teachers to generate reflection on "the nature of mathematics".)
		Examples: $\log_4 7 = \frac{\ln 7}{\ln 4}$, $\log_{25} 125 = \frac{\log_5 125}{\log_5 25} \left(=\frac{3}{2}\right)$. Link to 2.6, logarithmic functions.	
1.3	The binomial theorem: expansion of $(a+b)^n$, $n \in \mathbb{N}$.	Counting principles may be used in the development of the theorem.	Aim 8: Pascal's triangle. Attributing the origin of a mathematical discovery to the wrong mathematician.
	Calculation of binomial coefficients using Pascal's triangle and $\binom{n}{r}$.	$\binom{n}{r}$ should be found using both the formula and technology.	Int: The so-called "Pascal's triangle" was known in China much earlier than Pascal.
		<i>Example</i> : finding $\begin{pmatrix} 6 \\ r \end{pmatrix}$ from inputting	
	Not required: formal treatment of permutations and formula for ${}^{n}P_{r}$.	$y = 6 C_r A$ and then reading coefficients from the table. Link to 5.8, binomial distribution.	