Math SL PROBLEM SET 56

Section A (Short Answer) (NOTE: All Qs are CI)

- 1. Events A and B are independent with $P(A \cap B) = P(A \cap B') = 0.3$
 - a. Find P(A).
 - b. Find $P(A \cup B)$.
 - c. Draw a Venn diagram for this situation.
 - d. Draw a tree diagram for this situation
- 2. Let $\sin(\theta) = \frac{2}{3}$, where θ is obtuse. Find $\cos(\theta)$ and hence or otherwise, find $\cos(2\theta)$.
- 3. Let $f(x) = e^x 2$ and $g(x) = 3 + \frac{2}{x}$, for $x \in \mathbf{R}$.
 - a. Find $(g \circ f)(x)$.
 - b. Find the exact value of the vertical asymptote of $(g \circ f)(x)$.
 - c. Find $\lim_{x \to -\infty} (g \circ f)(x)$.
- 4. Consider the function $f(x) = \ln(2x 1)$. Let point *A* be a point on the curve where x = 3.
 - a. Determine the gradient (slope) of the curve at *A*.
 - b. The normal to the curve at A cuts the x-axis at P. Find the coordinates of P.
- 5. The first three terms of a geometric sequence are $\ln(x^9)$, $\ln(x^3)$, $\ln(x)$ for x > 0.
 - a. Find the common ratio.
 - b. Solve the equation $27 = \sum_{k=1}^{\infty} 3^{3-k} \ln x$.
- 6. Solve $log_{\sqrt{3}}(sin x) log_{\sqrt{3}}(cos x) = 1$ for $0 < x < \frac{\pi}{2}$.
- 7. The line *L* passes through the points P(5,0) and Q(0,2). The origin is at *O*. The point S(3 4x, x) is on *L*, and the line *OS* is perpendicular to *L*.
 - a. Write down the vectors $\langle PQ \rangle$ and $\langle OS \rangle$.
 - b. Find the coordinates of the point S.

Math SL PROBLEM SET 56

Section B (Extended Response/Investigation)

- 8. Let $f(x) = 2x^3 + 3x^2 12x + 10$ for $x \in \mathbf{R}$.
 - a. Find the *x*-coordinates of the extrema.
 - b. Use the second derivative to classify the extrema as maximums, minimums or neither.
 - c. Evaluate F(b) F(a) where F(x) is the antiderivative of f(x) and a and b are the *x*-coordinates of the extrema from Q(a) (NOTE: b > a).
- 9. A quadratic function *f* can be written in the form f(x) = a(x 1)(x b). The graph of *f* has an axis of symmetry at x = 2 and a *y*-intercept at (0,-3).
 - a. Find the value of *b*.
 - b. Find the value of *a*.
 - c. The line y = kx + 6 is a tangent to the curve of f. Find the values of k.
 - d. The quadratic function, f(x), is the derivative of some other function, F(x). If F(3) = 2, find the equation of F(x).
- 10. A line L_1 passes through the points A(0,-3,1) and B(-2,5,3). Show that $\overrightarrow{AB} = \begin{pmatrix} -2 \\ 8 \\ 2 \end{pmatrix}$
 - a. A second line, L_2 , has equation C. Find the coordinates of C. $r = \begin{pmatrix} -1 \\ 7 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$. The lines L_1 and L_2 intersect at point
- 11. The following table shows the probability distribution of a discrete random B, in terms of an angle θ .

b	0	1
P(B=b)	$2\cos(2\theta)$	$\cos(\theta)$

- a. Show that $\cos \theta = \frac{3}{4}$.
- b. Find $\tan \theta$, given that $\tan \theta > 0$.