Math SL PROBLEM SET 43

Section A (Skills/Concepts Consolidation)

1. (CA6.1 - N) (CI) Find the equations of derivatives of the following functions:

(Cirrito 19.1, p608)

- a. i. $g(x) = x^3 + 2x^2 15x 13$ b. i. $k(x) = \sqrt{x} - 6$ ii. $h(x) = (2x - 7)^2$ ii. $m(x) = \frac{x^4}{4} + \frac{3x^3}{2} - 2x^2$
- 2. (CA6.1 N) (CI) Determine the equations of the lines that are (i) tangent to and (ii) normal to the following functions at the specified points:

(Cirrito 20.1, p646)

- a. $y = 3x^2 4x$ at the point (1,-1).
- b. $y = 1 6x x^2$ at the point (-3,10).
- c. y = (x + 2)(x 6) at the point (3,15).
- 3. (CA6.1 N) (CI) The function $y = x^2 + 3x$ has a tangent line drawn at x = a where the tangent slope is 5. Find the value of *a*.

(Cirrito 20.1, p646)

4. (CA6.3 - N) (CI) Here is a graph of a function. Draw graphs of the first and second derivatives of this function.

(Cirrito 19.2, p609)

- 5. (CA6.3 N) (CI) For the function $f(x) = x^4 2x^3$, determine: (Cirrito 20.2, p649)
 - a. the equation of the derivative of f(x).
 - b. the zeroes of f`.
 - c. Hence or otherwise, find the coordinates of the stationary points of f.
 - d. Hence or otherwise, find the intervals of increase and decrease of f.
 - e. Sketch a graph of f. Then use your calculator and graph f and compare.

6. (CA6.3 - N) (CI) For the function $f(x) = x^4 - 4x^3$, determine:

(Cirrito 20.2, p649)

- a. the equation of the second derivative of f(x),
- b. the zeroes of f``.
- c. Hence or otherwise, find the coordinates of the inflection points of f.
- d. Hence or otherwise, find the intervals of concavity of f.
- e. Sketch a graph of f. Then use your calculator and graph f and then compare.

Math SL PROBLEM SET 43

Section B (Skills/Concepts Practice)

7. (V4.3 - N) (CA) The lines L_1 and L_2 have the following equations: (Cirrito 12.6.1, p432) L_1 : x = 1 + 2t, y = 3 - 4t, z = -2 + 4t L_2 : x = 4 + 3s, y = 4 + s, z = -4 - 2s

a. Show that the lines intersect at (1, 3, -2)

AC

(a)

- b. Find the angle between the lines at their intersection.
- 8. <u>(V4.1 N)</u> (CI) In the parallelogram shown, $\overrightarrow{AB} = b$ and $\overrightarrow{AD} = d$. Also, X is the midpoint of BC and Y lies on DC such that DY = 2CY. Express the following vectors in terms of b and d:

(b)

(d) \vec{DY} (e) \vec{AY} (f) \vec{XY} (Cirrito 12.3, p421)

BX

9. <u>(SP5.6, SP5.7 - R,N)</u> (CA) Here are the results of a survey on hours of homework done over the weekend by IB year 1 students. Students were asked to round their studying time to the nearest hour.

AX

(c)

(Cirrito 16.1, p527)

Number of hours studied	0	1	2	3	4	5
Number of students	4	12	8	3	2	1
Relative frequency				0.10		

- a. Explain why this data table shows an example of a discrete data set
- b. Find the mean and standard deviation of the number of hours studied.
- c. Prepare a frequency histogram of the results.
- d. How probable is it that a randomly selected student studied 2 hours?
- e. How probable is it that a randomly selected student studied at most 3 hours?
- f. How probable is it that a randomly selected student studied either 2 or 3 hours?
- g. Complete the row wherein you calculate the relative frequencies.
- h. We will now define the variable *X* as the number of hours studied. Determine:

i.
$$P(X = 3)$$
 ii. $P(X \ge 3)$ iii. $P(X = 3 | X \ge 3)$ iv. $P(2 \le X \le 4)$