5.2

Different Forms of the Equation of a Line

YOU WILL NEED

graphing calculator

GOAL

Given an equation in the form Ax + By + C = 0 or Ax + By = D, express the equation in the form y = mx + b.

LEARN ABOUT the Math

David is a dog breeder and needs to construct two identical, adjacent rectangular pens to contain the male and female puppies. He has 24 m of fencing material available.

What are some possible values for the length and width of the pens?

EXAMPLE 1 Using an algebraic strategy

Determine possible lengths and widths for the pens.

l represents the length of the pens and *w* represents the width.

$$2l + 3w = 24$$

I chose variables to represent each value.

I wrote an equation using two lengths and three widths to represent the total amount of fencing.

$$2l + 3w - 3w = 24 - 3w$$

$$2l = -3w + 24$$

$$\frac{2l}{2} = \frac{-3w + 24}{2}$$

$$\frac{2l}{2} = \frac{-3w}{2} + \frac{24}{2}$$

$$l = -\frac{3}{2}w + 12$$

$$y = -\frac{3}{2}x + 12$$
I used inverse operations to isolate the length variable *l*, so that I could calculate a length to go with any width I chose.

I replaced *l* with *y* since it is the dependent variable and *w* with *x* since it is the independent variable.

$$y = -\frac{3}{2}x + 12 \blacktriangleleft$$

slope =
$$\frac{\text{rise}}{\text{run}} = -\frac{3}{2}$$

$$y$$
-intercept = 12

Some possible dimensions for the pens are:

$$w = 2 \text{ m}$$
 and $l = 9 \text{ m}$

$$w = 3 \text{ m} \text{ and } l = 7.5 \text{ m}$$

$$w = 4 \text{ m}$$
 and $l = 6 \text{ m}$

$$w = 6 \text{ m}$$
 and $l = 3 \text{ m}$

The equation is in the form y = mx + b.

I know that m tells the slope and b tells the *y*-intercept.

I plotted the *y*-intercept first.

Starting at the *y*-intercept, I used the run to move 2 units right and the rise to move 3 units down to determine a second point on the line.

Then, I drew the line joining the two points.

I used the graph to locate other points that were on the line. Each ordered pair (x, y) or (w, l) represents the dimensions of a pen with a perimeter of 24 m.

Hanxiang's Solution: Isolating a variable to graph the relation with a graphing calculator

l represents the length of the pens and w represents the width.

I chose variables to represent each value.

$$2l + 3w = 24 \leftarrow 2l + 3w - 2l = 24 - 2l$$

$$3w = -2l + 24$$

$$\frac{3w}{3} = \frac{-2l + 24}{3}$$

$$\frac{3w}{3} = \frac{-2l}{3} + \frac{24}{3}$$

$$w = -\frac{2}{3}l + 8$$

The diagram has 2 horizontal and 3 vertical sides, so I wrote a sum equal to the amount of fencing.

My graphing calculator requires linear relations to be entered in the form y = mx + b. I decided to isolate w so that l would be the independent variable.

W

Tech **Support**

For help with graphing a linear equation using a graphing calculator, see Appendix B-3.

I entered the equation into the graphing calculator. I replaced the independent variable *I* with *x*, and the dependent variable *w* with *y*.

Since I knew that both the width and the length had to be positive, I changed my window settings so that I could focus on the graph's values in quadrant 1.

Tech | Support

For help determining values of a relation, see Appendix B-4.

l = 6 and w = 4

I used the value operation to get some possible values for I and w.

$$l = 2$$
 and $w = 6.\overline{66}$

$$l = 9$$
 and $w = 2$

Some possible dimensions are:

$$l = 6 \text{ m}$$
 and $w = 4 \text{ m}$

$$l = 9 \text{ m}$$
 and $w = 2 \text{ m}$

$$l = 2 \text{ m}$$
 and $w \doteq 6.7 \text{ m}$

This used a little more than 24 m of fencing, so I knew that the answer wasn't exact.

266 Chapter 5

Reflecting

- **A.** Why do Pietr's and Hanxiang's forms of the equation give some of the same values for *l* and *w*?
- **B.** How did isolating a variable help each student to solve the problem?

APPLY the Math

EXAMPLE 2

Using an algebraic strategy to determine the slope and the *y*-intercept

Determine the slope and the *y*-intercept of the line 3x + 4y + 8 = 0.

Sara's Solution

$$3x + 4y + 8 = 0$$

$$3x - 3x + 4y + 8 - 8 = 0 - 3x - 8$$

$$4y = -3x - 8$$

$$\frac{4y}{4} = \frac{-3x - 8}{4}$$

$$y = \frac{-3}{4}x - \frac{8}{4}$$

$$y = \frac{-3}{4}x - 2$$

I wanted the equation in the form y = mx + b, to determine the values of m and b.

I used inverse operations to isolate *y*.

I knew that if the equation was in the form y = mx + b, m would give the slope, and b would give the *y*-intercept.

The slope is $-\frac{3}{4}$ and the *y*-intercept

is -2.

Using an equation to represent and solve a problem

Sam has two part-time jobs. At the grocery store he earns \$8/h and at the library he earns \$10/h. Before going on vacation, he would like to save \$280. Determine the fewest number of hours he needs to work to achieve his goal.

Aaron's Solution

G is the number of hours worked at the grocery store. *L* is the number of hours worked at the library.

- I chose variables for the two unknowns.

 \square

NEL Analytic Geometry 267

$$8G + 10L = 280$$

$$8G - 8G + 10L = -8G + 280$$

$$10L = -8G + 280$$

$$\frac{10L}{10} = \frac{-8G + 280}{10}$$

$$\frac{10L}{10} = \frac{-8G}{10} + \frac{280}{10}$$

$$L = \frac{-4}{5}G + 28$$

I had to multiply each hourly rate by the number of hours to get the total earnings.

I used inverse operations to isolate L.

G	L	Total Hours Worked
0	$-\frac{4}{5}(0) + 28$ = 28	28
5	$-\frac{4}{5}(5) + 28$ = 24	29
7.5	$-\frac{4}{5}(7.5) + 28$ = 22	29.5
20	$-\frac{4}{5}(20) + 28$ = 12	32
45	$-\frac{4}{5}(45) + 28$ = -8	?

I calculated some possible solutions for the problem by choosing a value for *G* and substituting it into my equation.

My last choice meant that Sam worked a negative number of hours at the library, which is impossible. On the other hand, if Sam worked 45 hours at the grocery store he would earn \$360, which is more than the \$280 he wants to save.

If Sam worked 0 h at the grocery store and 28 h at the library, he would earn enough money for his vacation.

I chose the answer that showed the fewest total hours Sam had to work to earn \$280.

I knew that this made sense because (28 h)(\$10/h) = \$280.

268 Chapter 5

In Summary

Key Idea

- You can take an equation that is in the form Ax + By + C = 0 or Ax + By = D and rewrite it into the form y = mx + b by using inverse operations to solve for y.
- You can locate two points on most lines by plotting the y-intercept and locating a second point using the rise and run of the slope. Joining these points with a straight line gives you a sketch of the relation.

Need to Know

- Equations in the form Ax + By + C = 0, Ax + By = D, and y = mx + b represent linear relations.
- To enter equations into a graphing calculator, write linear equations in the form y = mx + b.

CHECK Your Understanding

- **1.** Express the equation 5x + 6y + 15 = 0 in the form y = mx + b.
- **2.** A room contains three-legged stools and four-legged chairs. There are 48 legs altogether.
 - a) Write an equation to represent the relationship between the number of stools, the number of chairs, and the total number of legs.
 - **b)** How many stools could there be?

PRACTISING

- **3.** Express each of the following equations in the form y = mx + b.
- K Then, state the slope and y-intercept of each line.

a)
$$4x - 3y = 24$$

d)
$$8x + 5y = 0$$

b)
$$2x + 5y = 15$$

e)
$$4x + 7y - 11 = 0$$

c)
$$3x - 6y - 14 = 0$$
 f) $2.4x + 1.5y = -3$

$$\mathbf{f)} \ \ 2.4x + 1.5y = -3$$

- **4.** Use the slope and *y*-intercept to sketch the graphs of each of the linear relations in question 3.
- **5. a)** Without graphing, predict whether each of the following lines will rise or fall to the right. How do you know?

i)
$$2x + 3y = 5$$

iv)
$$2x + 5y = 15$$

ii)
$$x - 4y + 10 = 0$$
 v) $2.5x - 15y = 20$

$$v) 2.5x - 15y = 20$$

iii)
$$3x + 5y - 8 = 0$$
 vi) $\frac{x}{2} - 3y = 6$

vi)
$$\frac{x}{2} - 3y = 6$$

b) Check your predictions by graphing each line.

- **6.** The dependent variable is *d* in each of the following equations. Isolate *d* to determine the *d*-intercept and the slope of each line.
 - a) 4t + 3d = 9
 - **b)** 8d 2h + 16 = 0
 - c) 15 + 5k 6d = 0
- 7. A farmer wants to build new enclosures for geese, ducks, and chickens.
- A He has 40 m of fencing to build the three identical, adjacent enclosures.

- a) Write an equation to represent the amount of fencing required.
- **b)** Rearrange your equation to isolate one of the variables.
- c) Graph the relationship.
- **d)** Suggest three possible sets of dimensions for the farmer's enclosures.
- **8.** Evan spent a total of \$18 on gourmet jellybeans and chocolate-covered almonds. The jellybeans cost \$12/kg. The almonds cost \$21/kg.

b) Isolate the variable for the quantity of jellybeans in your equation.

- **d**) If Evan bought 100 g of almonds, how many grams of jellybeans did he buy?
- 9. Orenda has a total of 41 loonies and toonies in her piggy bank. Their
- total value is \$59.
 - **a)** Write one equation for the total number of coins and a second equation for the total value.
 - **b)** Graph both lines.
 - c) Determine the coordinates of the point of intersection of the lines.
 - **d)** How do you know that the coordinates of the point of intersection are the only possible combination of loonies and toonies that meets the conditions of this situation?

270 Chapter 5

10. Amanda plans to make chocolate-chip cookies and oatmeal cookies for a bake sale. The chocolate-chip cookies use three eggs per batch. The oatmeal cookies use two eggs per batch. How many batches of each recipe can she make using two dozen eggs?

- 11. Textbooks have an average mass of 0.9 kg and notebooks have an average mass of 0.6 kg. To avoid straining his back, Stephen never puts more than 6 kg of books in his backpack.
 - a) Write an equation to represent the relationship between the number of each type of book and the total maximum mass.
 - **b)** Isolate one of the variables in your equation from part a).
 - c) Determine all possible combinations of textbooks and notebooks that would have a total mass of 6 kg.
- **12. a)** Show that 3x 8y + 5 = 0 and $y = \frac{3}{8}x + \frac{5}{8}$ represent the same line.
 - **b)** Do $y = \frac{2}{3}x + \frac{1}{3}$ and 2x + 3y + 1 = 0 represent the same line? How do you know?
- **13.** Punitha really only understands how to graph a line if it is in the form
- y = mx + b.
 - a) As her tutor, how would you ensure that Punitha is able to graph lines expressed in any form?
 - **b)** What can you tell Punitha about the similarities between all the linear equation forms?

Extending

- **14.** Show that $y = \frac{2}{3}x + \frac{7}{3}$ and $x = \frac{3}{2}y \frac{7}{2}$ represent the same line.
- **15. a)** Determine the slope and *y*-intercept for each linear equation.
 - i) 3x + 4y 8 = 0
 - ii) 2x + 5y 9 = 0
 - **iii)** 4x 3y = -12
 - **b)** An equation is given in the form Ax + By + C = 0.
 - i) What is the slope of this line?
 - **ii)** What is the *y*-intercept of this line?