IM2 Problem Set 6.1 - Working with Quadratic Functions

BIG PICTURE of this UNIT:	 How do we analyze and then work with a data set that shows both increase and decrease What is a parabola and what key features do they have that makes them useful in modeling applications How do I use graphs, data tables and algebra to analyze quadratic functions? How can I use graphs and equations of quadratic relations to make predictions from data sets & their models
------------------------------	---

- 1. (CI) Simplify the following polynomial expressions:
 - a. 2x(3x+1) + 5(3x+1)
 - b. x(x+5) 6(x+5)
 - c. $3(2x^2 1) + 6(2x 3) (2x^2 5x)$
- 2. (CI) Given the pattern2,4,8,14,22,32,44,
 - a. How do you know the pattern is NOT linear?
 - b. How do you know the pattern is NOT exponential?
 - c. What are the next three terms of the sequence
 - d. What are the 3 terms that came **before** 2?
- 3. (CA) Use your calculator and a standard view window to graph and analyze the following functions: (Your analysis will include the domain, range, asymptotes (if any), and *x* and *y*-intercepts (if any))
 - a. f(x) = x 4 b. $f(x) = 2^x 4$ c. $f(x) = x^2 4$
- 4. (CA) In a football game, Youssef tries kicking the football and the path that the ball travels can be modeled by the function $h(x) = x \frac{1}{10}x^2$, where *h* is the height above the ground, in meters, and *x* is the horizontal distance travelled, in meters, by the ball.
 - a. Evaluate h(2) and explain what this means in the context of the problem.
 - b. Graph the function on your calculator. Write down the window settings that allow you to see the important details of the function.
 - c. When does the ball reach its maximum height? What is the maximum height of the ball?
 - d. How far forward does the ball travel?
 - e. What would the domain and range for this function in this context be?

- 5. (CI) For the following equations, find the value of x that makes the equation true.
 - a. (i) 2x 4 = 0(ii) $\frac{1}{2}x 4 = 0$ (iii) $2^x 4 = 0$ (iv) $2^x + 4 = 0$ b. (i) $x^2 4 = 0$ (ii) $x^2 x 2 = 0$ (iii) $x^2 2x 8 = 0$
- 6. (CI) Apply the distributive property to simplify the following polynomial expressions:
 - a. (x+3)(2x+4)b. (y+2)(y-1)c. (2x+3)(3x-5)
- 7. (CI) For the function $f(x) = x^2$, prepare a data table and then graph the data and draw a smooth curve through the data points you have generated from the function.

x	-4	-3	-2	-1	0	1	2	3	4
f(x)									

Then determine:

- a. the domain and the range of f(x);
- b. the vertex of the curve;
- c. is the curve symmetrical? Where might the axis of symmetry be?
- 8. (CA) You are provided with data showing the population of Namibia since 1950. NOTE #1: we are using t = 0 to represent the year 1950. NOTE #2: population values are in thousands.

year, t	0	5	10	15	20	25	30	35	40	45	50
population	511	561	625	704	800	921	1018	1142	1409	1646	1894

- a. Graph the scatter plot on your calculator. Record your window settings.
- b. Find a quadratic regression equation for the population data.
- c. Then, estimate the population of Namibia in the years 1940, 1997 and 2005. NOTE: population values are in thousands.
- d. Find an exponential regression equation for the data as well and compare the "fit" of the two models. Which model seems to be a 'better fit"?
- 9. (CA) For the following quadratic functions, (i) f(x) = (x+2)(x+6) and g(x) = -2(x-5)(x+7)
 - a. Graph them on your calculator.
 - b. Find the vertex
 - c. Find the *x*-intercepts
 - d. Explain why we call this form of a quadratic equation "factored form" or "intercept form."

EXTENSION PROBLEMS

10. Graphs of Quadratic Functions – Geogebra and translation vectors

- a. Use GEOGEBRA to graph the function $f(x) = x^2$.
- b. Create a vector.
- c. Now use the "translate by vector" tool and apply it to the function f(x). Describe what happens to the quadratic function.
- d. Now let's all create the translation vector and apply it to f(x).
 - i. State the coordinates of the vertex ==> is there a connection to translation vector?
 - ii. State the domain and range of the function è is there a connection to translation vector?
 - iii. Is the parabola symmetrical? If so, where is the line of symmetry? è is their a connection to translation vector?
- e. *KEY POINT*: Write down the new "equation" of this quadratic function and explain how the equation of the quadratic function is related to the translation vector.
- 11. https://nrich.maths.org/773
- 12. https://brilliant.org/daily-problems/cross-square/