BIG PICTURE of this UNIT:	 How can we analyze growth or decay patterns in data sets & contextual problems? How can we algebraically & graphically summarize growth or decay patterns? How can we compare & contrast linear and exponential models for growth and decay problems. How can we extend basic function concepts using exponential functions?
---------------------------	---

Part 1 - Skills/Concepts Review

1. (CA) Here are four data sets. Describe each pattern, predict the next 4 terms and then determine the 15th term of each set.

		x	0	1	2	3	4	5
а	Set $1 \Rightarrow$	У	5	10	20	40	80	160
u.	5001		0	1	2	2	4	5
		x	0	1	2	3	4	5
b	Set $2 \Rightarrow$	у	10	13	16	19	22	25
0.	5012							
		x	0	1	2	3	4	5
с	Set $3 \Rightarrow$	У	10000	5000	2500	1250	625	312.5
		x	0	1	2	3	4	5
d	Set $4 \Rightarrow$	у	120	110	100	90	80	70

- 2. (CI) Evaluate the following numerical expressions:
 - a. (i) 4^{-3} (ii) 5^{-2} (iii) 2×5^{0} (iv) 10^{-2} b. (i) $2^{-1} + 2^{2} + 2^{3} 2^{-2}$ (ii) $3^{-2} + 3^{0} + 3(3^{-1} + 3^{1})$
- 3. (CI) Using your knowledge of the "Exponent Laws", simplify each expression. All final answers should only have positive exponents.

a. (i)
$$(x^{-2}x^{-4}y^{2})^{3}$$
 (ii) $(-3a^{3})^{-4} \times 2a^{4}$ (iii) $(2p^{5})^{-2} \times -3p^{-2}$
b. (i) $\frac{2x^{3}y^{2} \times 4x^{2}y^{-2}}{3x^{-2}y^{3}}$ (ii) $\frac{a^{3}b^{3} \times a^{-1}b^{2}}{2a^{-2}b^{4}}$ (iii) $\frac{(2x^{-1})^{-2}y^{4}}{8x^{4}y^{5} \times 2x^{2}y^{-2}}$

- 4. (CA) Youssef's mark in SEM 2 started at 40% but has been increasing by 4% every week.
 - a. Complete this table of values for this relationship between Youssef's mark and the number of weeks since the start of the semester.

Week number	0	1	2	3	4	5
Mark	40					

b. Determine his mark: (i) in week 5 (ii) in week 10 (iii) in week 15

- (CA) Mr Santowski's investments have been decreasing by 2% every month since January 1st, 2019. The total value of his investments were 250,000 USD on March 1st, 2019.
 - a. Complete this table of values for this relationship between the value of Mr. S investments and the number of months since January 1st, 2019.

Month	Jan	Feb	Mar	Apr	May	June
Value			250000			

- b. Determine the value of his investments on (i) July 1st, 2019 and (ii) on Jan 1st, 2020
- 6. (CI) A relation is defined by the following description: To generate the numbers in this relation, the starting number will be 200. Every subsequent number is made by always increasing the previous number by a factor of $\frac{3}{2}$. Create a table of values for this relation and then graph this relation. Predict an equation for this relation.

Part 2 - Skills/Concepts Application Problems

- 7. (CA) From 1990 to 1997, the number of cell phone subscribers *S* (in thousands) in the US can be modeled by the equation $S = 5535.33(1.413)^t$ where *t* is number of years since 1990.
 - a. BEFORE you graph the function, explain how you know that this is a growth curve.
 - b. Sketch a graph of the model. Label three points on the function
 - c. In what year was the number of cell phone subscribers about 31 million?
 - d. According to the model, in what year will the number of cell phone subscribers exceed 90 million?
 - e. Estimate the number of subscribers in 2010.
 - f. Do you think this model can be used to predict future number of cell phone subscribers?
 Explain
- 8. (CA) Your new computer was initially valued at \$1500 but its value, V in dollars, over time, t in years, is modelled by the equation $V(t) = 1500(0.82)^{t}$.
 - a. Graph the function on your calculator, sketch the graph in your notes and use the TABLE feature on your calculator to record the value of the computer in the first 4 years.
 - b. How much will your computer be worth in 6 years?
 - c. How long will it take before the value of your computer is half of its original value?

- 9. (CI) Given the function $h(x) = 4 2^{x+3}$.
 - a. Without using your calculator, evaluate the following:
 i. h(0) ii. h(-1) iii. h(-2) iv. h(1) v. h(2)
 - b. Find the value for x for which: i. h(x) = 0 ii. h(x) = -4 iii. h(x) = -12
 - c. Will h(x) ever equal 4? Why or why not?
 - d. Using your answers from these three questions, sketch the function h(x).
 - e. Use your calculator and graph h(x).
- 10. (CA) A population of 800 beetles is growing each month at a rate of 5%. Hanna wants to write an equation that equation that can be used to model the number of beetles, *B*, as a function of the number of months, $n \Rightarrow$ so she wants an equation for B(n).
 - a. Shivani says that the equation includes the 5%, so she writes $B(n) = 500(0.05)^n$. Paula sees the 5% and writes her equation as $B(n) = 500(5)^n$ whereas Vittoria also sees the 5%, so she writes her equation as $B(n) = 500(1.05)^n$.
 - i. How can you determine which equation is correct?
 - ii. Which equation is correct and how did you determine the correct equation?
 - b. How many beetles will there be in 8 months?
 - c. When will there be 1600 beetles?

HOMEWORK PROBLEMS:

- 11. From the <u>Nelson 9 textbook, Chap 2.2</u> \Rightarrow starting on page 90, Q5,6,7
- 12. From the <u>Nelson 9 textbook, Chap 2.3</u> \Rightarrow starting on page 96, Q6,7,8