
BIG PICTURE	 What is meant by the term FUNCTIONS and how do we work with them? mastery with working with basics & applications of linear functions
of this UNIT:	 mastery with working with basics & applications of linear systems understanding basics of function concepts and apply them to lines & linear systems

Part 1 - Skills/Concepts Review

- 1. (CI) Use the graph below to answer the following questions about the function, y = f(x). In the graph f(4) = 1.
 - a. Evaluate: f(6), f(2), f(0), f(5).
 - b. For which values of x is f(x) = 1?
 - c. State the domain and range of *f*.
 - d. There are three linear segments in this function. Determine the equation of each segment and express in slope-intercept form

- 2. (CI) Solve the following linear systems using the substitution method
 - a. Line 1: 3x 2y = 10Line 2: x + 3y = 7b. Line 1: x + 3y = 5Line 2: 2x 3y = -17Line 1: x + 3y = 5Line 2: 2x 3y = -17
 - c. Line 1: y = -2x + 5 Line 2: 4x + 2y = 10
- 3. (CA) Given $\triangle ABC$, where $\angle ABC = 90^{\circ}$ and AB = 5 cm and BC = 12 cm, determine:
 - a. The length of side AC;
 - b. The measure of $\angle BAC$ and $\angle BCA$
 - c. If point B is located at (0,0) and point A is located at (5,0), determine the equation of the line through points A and C.
- 4. (CI) Solve the following linear systems using the elimination method:

a.	Line 1:	2x + y = 29	Line 2:	4x - 3y = 18
b.	Line 1:	5x + 2y = 18	Line 2:	2x + 3y = 16
c.	Line 1:	3x + 21 = 5y	Line 2:	4y + 6 = -9x

- 5. (CA) The linear system 6x + 5y = 10 and ax + 2y = b has an infinite number of solutions. Determine the value(s) of *a* and *b*.
- 6. (CI) Hana paid a one-time registration fee to join a health club but she also pays a monthly fee. After 3 months, she had paid \$315 and after 7 months, she had paid \$535. Determine the registration fee and the monthly fee.

Part 2 - Skills/Concepts Application Problems

- 7. (CA) ReadyCars charges \$59/day plus \$0.14/km to rent a car whereas BestCARS charges \$69/day plus. \$0.11/km. Use may use DESMOS to help prepare your graphs.
 - a. Mr. D wants to drive 200 km and rent the car for only one day. Which company should he use?
 - b. Mr. S wants to rent a car for 2 days and drive from the airport to his home, which is a trip of 500 km. How much does each each company charge for this trip.
 - c. Prepare a graph showing the cost of the following trip: a three day trip wherein you travel 200 km on day 1, 400 km on day 2 and 600 km on day 3.
- 8. (CI) A rectangle has a perimeter of 40 meters.
 - a. State three possible dimensions that this rectangle may have. Determine the area of each of your possible fields.
 - b. One possible dimension of the rectangle has its length being 2 units longer than its width. Create a **linear system** for this situation.
 - c. Solve your linear system and explain what your solution means.
 - d. Maya says that we did not need a **linear system**, we could have simply used **one linear** equation to solve the problem. What equation did Maya use?
- 9. (CI) Solve the linear system defined by $x \frac{1}{3}y = -1$ and $\frac{2}{3}x \frac{1}{4}y = -1$. Verify your solution.
- 10. (CA) Use DESMOS to help you with this question. Given the function g(x) = -2x + 7;
 - a. Show that the point (3,1) is on the line.
 - b. Is the point (5,10) above or below the line? Explain your reasoning.
 - c. Explain how you would graph the inequality g(x) < -2x + 7?
 - d. Use DESMOS to graph g(x) < -2x + 7.
- 11. (CA) Given the following functions, evaluate or solve as required:
 - a. If f(x) = 4x 3, evaluate f(-9) and solve for x if f(x) = 53.
 - b. If $g(x) = x^2 2$, evaluate g(-2) and solve for x if g(x) = 7.
 - c. If $h(x) = -x^2 4$, evaluate h(5) and solve for x if h(x) = -40.
 - d. If $m(x) = 4^{2x-1} 1$, evaluate m(0) and m(-0.5) and solve for x if m(x) = 15.
 - e. If $g(x) = x^2 x 2$, evaluate g(2) and is there another value for x if g(x) = 0?
- 12. (CA) Juan is a cashier at a store. He has a total of \$580 in bills. He has 76 bills, consisting of \$5 bills and \$10 bills. How many of each type of bill does he have?

Part 3 - Extension Problems

- 13. Complete the table of value for the function $f(x) = \begin{cases} -x & x \le 0 \\ x & x > 0 \end{cases}$ and then prepare a graph from your table of values.
- 14. Absolute Value means the ______ from zero. So what do you think the graph of this equation looks like? Make your best sketch of the graph of y=x looks like. (this is just your best guess)
- 15. Use your calculator and DESMOS to prepare graphs of the absolute value function. How do these graphs compare to the graph and table of values from Q13?

HOMEWORK PROBLEMS:

- (1) Nelson 10, Chap 1.4, p40, Q12, 13, 14
- (2) Nelson 10, Chap 1.6, p55, Q11ade, 13