Math SL PROBLEM SET 69

Section A (Short Answer)

- 1. <u>(F5.9 E) (CA)</u> Introducing standardized *z* values: Given the following means and standard deviations, determine the *z*-value of the given data points. (Cirrito 17.2, p567)
 - a. If $\mu = 90$ and $\sigma = 10$, find the *z*-value of x = 100. What does this *z*-value MEAN?
 - b. If $\mu = 45$ and $\sigma = 5$, find the *z*-value of x = 40. What does this *z*-value MEAN?
 - c. If $\mu = 120$ and $\sigma = 18$, find the *z*-value of x = 140. What does this *z*-value MEAN?
 - d. If $\mu = 90$ and $\sigma = 10$, find the *z*-value of x = 75. What does this *z*-value MEAN?
- 2. (F5.9 E) (CA) Working with Standardized *z* values: Given the following means and/or standard deviations and/or *z*-values and/or *x* data values, find the unknown. (Cirrito 17.2, p567)
 - a. If $\mu = 53$ and $\sigma = 5$ and x = 50, solve for z.
 - b. If $\mu = 90$ and x = 81 and z = -0.975, solve for σ .
 - c. If $\sigma = 55$ and x = 200 and z = -1.5, solve for μ
 - d. If $\mu = 90$ and $\sigma = 20$ and z = 1.88, solve for *x*.
- (T3.1 R) (CI) Simplify the following expressions, i.e. write each equation in terms of a single logarithm. (Cirrito 7.4, p221)
 - a. $2\log_a(x) + 3\log_a(x+1)$
 - b. $5\log_b x \frac{1}{2}\log_b(2x 3) 3\log_b(x + 1)$
 - c. $2\ln x 4\ln(1/y) 3\ln(xy)$
- 4. (CA6.6 E) (CA) The velocity, v, in ms⁻¹ of a particle moving in a straight line is given by the function $v(t) = 2 \sqrt{16 t}$, $0 \le t \le 16$. (Cirrito 22.6, p764)
 - a. Graph the velocity function.
 - b. When is the particle stationary?
 - c. Find the total distance travelled by the particle and find the displacement of the particle.
 - d. After 7 seconds of motion, the object is located at the origin. Hence, find the equation of the position function of this particle.
 - e. Find the acceleration function of this particle.
- 5. <u>(SP5.8 R) (CA)</u> An X-ray has a probability of 0.95 of showing a fracture in a leg. If 5 different X-rays are taken of a particular leg, find the probability that (Cirrito 16.3, p548)
 - a. all five X-rays identify the same fracture.
 - b. the fracture does not show up.
 - c. at least 3 X-rays show the fracture.
 - d. At most one X-ray shows the fracture.
 - e. Draw a histograph of this distribution.

Math SL PROBLEM SET 69

- 6. <u>(SP5.7 R) (CA)</u> The number of cars passing an intersection during the hours of 4 pm and 6 pm follows the probability distribution modelled by the function $P(X = x) = \frac{(0.1)^x}{x!}e^{-0.1}$, x = 0,1,2,3... where the random variable X denotes the number of cars that pass this intersection between 4pm and 6pm. (Cirrito 16.1, p533)
 - a. Find (i) P(X=0) (ii) P(X=1)
 - b. Find the probability of observing at least two cars passing this intersection between 4pm and 6pm.
 - c. Draw a histograph of this distribution.

Section B (Extended Response/Investigation)

- 7. (CA6.5 N) (CA) Determine the following volumes of rotation when: (Oxford 9.6, p318)
 - a. the region under the curve f(x) = 2 between x = 0 and x = 5 is rotated around the *x*-axis. What 3D solid is this? Use an appropriate volume formula to find volume and compare this volume (and formula) to the answer you got using the calculus.
 - b. the region under the curve f(x) = 2x between x = 0 and x = 5 is rotated around the *x*-axis. What 3D solid is this? Use an appropriate volume formula to find volume and compare this volume (and formula) to the answer you got using the calculus .
 - c. the region under the curve $f(x) = \sqrt{4 x^2}$ between x = -2 and x = 2 is rotated around the *x*-axis. What 3D solid is this? Use an appropriate volume formula to find volume and compare this volume (and formula) to the answer you got using the calculus .
- (SP5.1 R) (CA) The table below shows the number of minutes of sunshine in the first 100 days of the year in Newtown. (Oxford 8D, p264)
 - a. Is the data discrete or continuous?
 - b. What is the modal class?
 - c. Find the mean number of minutes of sunshine.
 - d. Construct a relative frequency histogram and hence a relative frequency polygon for this data set.
 - e. Construct a cumulative frequency graph and use the CFG to estimate the IQR.

Minutes (m)	f
$0 \le m < 30$	12
$30 \le m < 60$	16
$60 \le m < 90$	20
$90 \le m < 120$	36
$120 \le m < 150$	16