# Math SL PROBLEM SET 68

### Section A (Short Answer)

- 1. (F2.5 R) (CI) Given the rational function  $g(x) = \frac{x+1}{2x-4}, x \neq 2$ , (Oxford 5.3, p147)
  - a. Determine the domain and range of this function
  - b. Find the equation(s) of the asymptotes.
  - c. Find the *x* and *y*-intercepts.
  - d. Sketch the function.
  - e. Find the equation of the inverse function.
  - f. Find the equation of the line tangent to the curve g(x) at the point where x = -1
- 2. (A1.1 R) (CA) You are given two series. (Oxford 6.8, p181)
  - a. The first series has the formula  $S_n = 3n^2 2n$ .
    - i. Find the values of  $S_1$ ,  $S_2$  and  $S_3$ .
    - ii. Find the  $u_1$ ,  $u_2$  and  $u_3$ .
    - iii. Find an expression for  $u_n$  for this first series.
  - b. The second series has the formula  $S_n = 2^{n+2} 4$ .
    - i. Find the values of  $S_1$ ,  $S_2$  and  $S_3$ .
    - ii. Find the  $u_1$ ,  $u_2$  and  $u_3$ .
    - iii. Find an expression for  $u_n$  for this second series.
- 3. (T3.1 R) (CA) The diagram shows the circle, center O, with radius 3 m, AB = 11 and angle AOB = 0.94 radians. (Oxford 11.7, p391)
  - a. Find the shaded area.
  - b. Is line segment AB tangent to the circle? Show supporting evidence.



- 4. (CA6.6 E) (CA) The velocity, v, in ms<sup>-1</sup> of a particle moving in a straight line is given by the function  $v(t) = t^2 9$ , where t is time in seconds. (Oxford 9.7, p321)
  - a. Find the acceleration of the particle at t = 1.
  - b. The initial displacement of the particle is 12 meters. Find an equation for the displacement function, s(t).
  - c. Find the **net** distance traveled as well as the **total** distance traveled between 2 s and 8 s.

5. (A1.3 - R) (CA) Find the constant term in the expansion of  $(2x^2 - \frac{3}{x})^6$ . (Oxford 6.9, p184)

# Math SL PROBLEM SET 68

- 6. (F2.1, F2.6 R) (CA) Consider the functions  $t(x) = e^x$  and  $m(x) = \sqrt{x}$ . (Cirrito 5.4.2, p164)
  - a. Find the equations of  $t^{-1}(x)$  and  $m^{-1}(x)$ .
  - b. Find the equations of tom(x) and mot(x) and state the domain of each composite.
  - c. Find the equations for  $(tom)^{-1}(x)$  and  $(mot)^{-1}(x)$  and state the domain of each inverse.

#### Section B (Extended Response/Investigation)

- 7. (CA6.5 N) (CA) To introduce volumes of rotation: (Oxford 9.6, p318)
  - a. Watch these videos to introduce the idea of "solids of revolution":
    - i. Concept  $\Rightarrow$  <u>https://www.youtube.com/watch?v=3oAjcLD34kc</u>
    - ii. Concept: First five minutes of https://www.youtube.com/watch?v=mQj0w8nVyc4
    - iii. And finally here's how to do the math ⇒ https://www.youtube.com/watch?v=FGF0wP6THq4
  - b. Try it yourself: To find the volume of the solid formed when the region bounded by the curve g(x) = 6 2x and the *x*-axis between x = 0 and x = 3 is rotated 360° around the *x*-axis:
    - i. Graph the function g(x) = 6 2x, between x = 0 and x = 3.
    - ii. Shade in the region between g(x) and the x-axis, between x = 0 and x = 3.
    - iii. Perform the relevant integration to determine the volume of the 3D solid that would result from the rotation.
    - iv. What 3D shape do you get?
    - v. Determine the volume of this familiar 3D shape by using its volume formula.

#### 8. (CA6.5 - E) (CI) Consider the function $f(x) = x^4 - x^2$ . (Oxford 9.5, p313)

- a. Find the zeroes of f(x).
- b. Find  $\frac{d}{dx}f(x)$  and hence find the coordinates of the minimum and maximum point(s).
- c. Sketch f(x).
- d. Sketch  $g(x) = 1 x^2$  on the same axes.
- e. Find the area of the region bounded between f and g.