Math SL PROBLEM SET 62

Section A (Short Answer)

- 1. (<u>C6.2 R</u>) (CI) The slope of the curve $y = x^2 4x + 6$ at the point (3,3) is equal to the slope of the curve $y = 8x x^2$ at (*a*,*b*). Find the value of *a* and *b*. (Cirrito 20.1, p643)
- 2. (C6.3 R) (CI) For the function $y = x^4 2x^3$; (Cirrito 20.2, p649)
 - a. find all stationary points and inflection points of the function,
 - b. classify the stationary points,
 - c. state its end behaviours,
 - d. sketch the function.
- 3. $(\underline{V4.1 R})$ (CA) Triangle TRI is defined as follows:

$$\overrightarrow{OT} = egin{pmatrix} 3 \ -1 \end{pmatrix}; \ \overrightarrow{TR} = egin{pmatrix} 5 \ 6 \end{pmatrix}; \ \overrightarrow{TR} \cdot \overrightarrow{IR} = \ 0; \ \overrightarrow{TI} = kj$$

where k is a scalar and j is a **unit vector in the y-direction**. (Cirrito 12.3, p415)

- a. Draw an accurate diagram of Δ TRI.
- b. Write the vector \overrightarrow{IR} .
- c. Find the measure of angle RIT.
- 4. (<u>SP5.4 R</u>) (CI) A survey is conducted with eight marathon runners. For each runner, x is the number of marathons the runner has completed, and y is the runner's personal best time for the marathon distance. Let r be the correlation coefficient. (Oxford 10.4, p349)
 - a. Write down the possible minimum and maximum values of *r*.
 - b. Given that r = -0.85, which one of the diagrams below best represents the data?

c. For the data in diagram C, which two of the following phrases describe the correlation between *x* and *y*:

perfect, zero, linear, strong positive, strong negative, weak positive, weak negative

Math SL PROBLEM SET 62

5. (<u>C6.5 - N</u>) (CI) Evaluate the following definite integrals. Use your TI-84 to graphically verify your result and include a diagram. (Cirrito 22.4, p740)

a.
$$\int_{-2}^{1} (3x^2 - 4x^3) dx$$
 b. $\int_{1}^{5} \frac{5}{t^2} dt$ c. $\int_{0}^{\pi} \cos(\frac{1}{2}x) dx$ d. $\int_{1}^{3} \frac{a^5 + 2}{a^2} da$

- 6. (<u>C6.3 N</u>) (CA) Use Symbolab to take the following derivatives. Comment on any patterns you observe: (Cirrito 19.5.3, p638)
 - a. $f(x) = \frac{2x-3}{x+1}$ b. $g(x) = \frac{\sin(x)}{x}$ c. $h(x) = \frac{e^{2x}}{x^2}$

Section B (Extended Response/Investigation)

7. (C6.6 - E) (CA) The displacement, *s*, of a particle moving along the *x*-axis relative to the origin, is given by the position function $s(t) = -t^2 + 6t$, where *s* is in centimeters and *t* is in seconds.

(Cirrito 20.3.1, p694)

- a. Determine the particle's velocity function, v(t).
- b. Graph both the position function and the velocity function on separate axis.
- c. Find the particle's position at the following times:

i. t = 0, ii. t = 1, iii. t = 3 iv. t = 6 seconds.

d. Find the particle's displacement for the following time intervals: (confirm on TI-84 using VT graph (how??)

i. $0 \le t \le 1$, ii. $1 \le t \le 3$, iii. $3 \le t \le 6$ iv. $0 \le t \le 6$.

- e. Find the particles total distance travelled for the following time intervals:
 - i. $0 \le t \le 1$, ii. $1 \le t \le 3$, iii. $3 \le t \le 6$ iv. $0 \le t \le 6$.
- 8. (<u>SP5.7 E</u>) (CA) Here is a data set, showing the daily demand for AAPLE V2 computers and the associated probabilities for the specified daily demand: (Cirrito 16.2, p535)

x	0	1	2	3	4	5
P(X=x)	0.08	0.40	0.24	0.15	0.08	0.05

- a. Calculate the expected value of the daily demand using the formula $E(x) = \Sigma x \times P(x)$.
- b. Calculate the variance using the formula $var(x) = \Sigma (x \mu)^2 \times P(x)$.
- c. Calculate the variance using the formula $var(x) = \sum x^2 \times P(x) [E(x)]^2$
- d. Hence, calculate the standard deviation.
- e. Find the expected value and standard deviation using the LISTS and STATS CALC on your TI-84.