Math SL PROBLEM SET 55

Section A (Short Answer)

- 1. (SP5.5 R) (CI) A bag contains 4 green marbles and 6 yellow marbles. Sam selects one marble from the bag and then without replacement, he selects a second marble. (Oxford 3.5, p89)
 - a. Write down the probability that the first marble Sam selects is green.
 - b. Find the probability that Sam selects two green marbles.
 - c. Find the probability that Sam selects two marbles of different colour.
- (F2.4 R) (CI) Here is part of the graph of a quadratic function, f(x), as shown below. The graph passes through the points (-6,0), (-2,8) and (2,0). (Cirrito 2.4, p39)
 - a. Write down the equation of the axis of symmetry
 - b. Write the function f in the form $f(x) = a(x-h)^2 + k$.

3. <u>(SP5.7 - R)</u> (CI) Here is a probability distribution for a discrete random variable *X* in the table below. Given that E(X) = 2.8, find the value of *a* and the value of *b*. (Cirrito 16.2, p535)

x	0	1	3	4
P(X=x)	0.1	а	0.5	b

- 4. (T3.4 R) (CI) Part of the graph of $f(x) = a\cos(b(t-c)) + d$ is shown. There is a maximum point at M (2, 11) and a minimum point at K (5, 3). (Cirrito 10.3, p337)
 - a. Write the equation as $f(x) = a\cos(b(t-c)) + d$

The transformation *T* is given by a vertical stretch of a

scale factor of $\frac{1}{3}$, followed by a translation of $\sqrt{-3}$

b. Let M' be the image of M under *T*. Find the coordinates of M'.

Math SL PROBLEM SET 55

5. (F2.1, F2.5 - R) (CI) Given the functions $f(x) = \frac{1}{x}$ and $g(x) = \frac{a}{x} - 1$, where $a \neq 0$. (Cirrito 5.3.5, p144)

- a. Find $g^{-1}(x)$.
- b. Find $g \circ f(x)$.
- c. Solve the equation $g^{-1}(x) = g \circ f(x)$ and express answers for x in terms of a (HINT: Use QF but DO NOT attempt to simplify!!)
- 6. (C6.2 E) (CI) Find the first four derivatives of $y = e^{2x} + e^{-2x}$ and then write a generalization for finding $\frac{d^n y}{dx^n}$ for this function. (Cirrito 19.3, p618; Cirrito 19.4, p636)

Section B (Extended Response/Investigation)

- 7. (C6.3 R) (CI) Given the quartic function $f(x) = 2x^4 4x^3 4$ on the domain of $-1 \le x \le 2$. (Cirrito 20.2, p649)
 - a. Find the *x* co-ordinates of the extrema and classify them as minimum(s), maximum(s) or neither. Show/explain your justification for your classification of the extrema.
 - b. Determine the *x* co-ordinates of the inflection points and the intervals of concavity.
 - c. Evaluate f(0).
 - d. Given your analysis in Q(a) and Q(b) and Q(c), sketch the function.
- 8. <u>(V4.2, V4.3 R)</u> (CI) Given quadrilateral PQRS with its vertices at P(5,10), Q(-5,8), R(-7,-8) and S(7,0). (Cirrito 12.7, p444)
 - a. Find vector **PR** and **QS**.
 - b. Show that vector **PR** is perpendicular to vector **QS**.

The lines PR and QS can be written in vector form.

c. Find a vector equation for line PR and find a vector equation for line QS.

The vectors **PR** and **QS** intersect at the point *T*.

d. Using your vector equations from Q(c), find the coordinates of *T*.

