
Math SL PROBLEM SET 45

Section A (Short Answer)

- 1. (F2.3 R) (CI) The zeroes of an original function, Q(x), are x = -4, x = 5 and x = 8. Find the zeroes of the given functions: (Cirrito 6.1, 6.2, p173 & p177)

- a. f(x) = Q(4x) b. t(x) = Q(x-3) c. k(x) = Q(2x-5) d. j(x) = 3Q(x+2)
- 2. (T3.6 E) (CA) Roeland is about to bungie jump from the top of a 50 m high bridge. From Roeland's position, he sees two of his friends down on the ground. David is S50°W and is seen with an angle of depression of 38°, while Omar is S60°E and is seen with a 35° angle of depression. How far apart are David and Omar? (Cirrito 9.6, p308)

- 3. (CA6.2 N) (CA) Given the cubic function $y = x^3 3x^2 9x$; (Cirrito 20.3, p672)
 - a. Find the first derivative and sketch it and then determine the (i) location of the extrema; and (ii) the intervals(s) of increase and decrease of the function.
 - b. Find the equation of the derivative of the derivative from Q(a). NOTE: this is obviously referred to as the second derivative.
 - c. Find the zero(s) of the second derivative and suggest what the significance of this point(s) might be.
- 4. (CA6.2 N) (CA) Use DESMOS to graph $y = \sin(x)$ and use this graph to sketch the graph of the derivative function of $y = \sin(x)$. Predict the equation of the derivative based upon this sketch and then verify the equation of the derivative using Wolframalpha. (Cirrito 19.3, p618)
- 5. (CA6.2 N) (CA) Use DESMOS to graph y = cos(x) and use this graph to sketch the graph of the derivative function of y = cos(x). Predict the equation of the derivative based upon this sketch and then verify the equation of the derivative using Wolframalpha. (Cirrito 19.3, p618)
- 6. (A1.2, F2.6, F2.7 R) (CI) Solve for x in each equation: (Cirrito 7.4, p219)
 - a. $\log_3(2x+1) = 2$
 - b. ln(x + 3) ln(10) = -ln(x)

Math SL PROBLEM SET 45

- 7. (F2.1, F2.5, C6.1 R) (CI) Consider the function $g(x) = \frac{a}{x-b}$. The line x = 5 is a vertical asymptote to the graph of g(x). We also are given the fact that g(3) = -4. (Cirrito 5.3.5, p144)
 - a. Write down the value of b.
 - b. Find the value of *a*.
 - c. Find the equation of $g^{-1}(x)$.
 - d. Find $\lim_{x \to \infty} g^{-1}(x)$

Section B (Extended Response/Investigation)

- 8. (C6.2 N) (CA) For our "parent functions" y = 1/x, $y = e^x$, $y = \ln(x)$, and $y = \sqrt{x}$; (Cirrito 19.3, p618)
 - a. Graph each function using DESMOS (sketch into your notebooks)
 - b. Use DESMOS to graph the derivative of each function; (include sketch)
 - c. Use Wolframalpha to find the equation of the derivative of each function
- 9. (F2.3 R) (CI) Suppose we know the following information about the function f(x). The domain is $-10 \le x \le 15$; the range is $-20 \le y \le 15$; the x-intercepts are at x = -1 and x = 7; the y-intercept is at y = 10 and there is a global maximum at (2,15). For each of the functions below, identify the domain, range, x- and y-intercepts and global maximum if possible. If there is not enough information to identify any feature, explain why this is the case. (Cirrito 6.1, 6.2, p173 & p177)

 - a. g(x) = -2 f(2x) b. m(x) = f(x+5) 1 c. k(x) = f(2-x) d. t(x) = f(0.5x) + 6