Math SL PROBLEM SET 44

Section A (Short Answer)

- 1. (C6.1 N) (CI) Sara is working with the cubic function $g(x) = x^3 + x^2 5x + 2$. She would like to use calculus to determine: (Cirrito 20.2, p649)
 - a. the equation of the line that is normal to the cubic at the point (2,4) (What does a line that is normal mean in the first place?)
 - b. the *x*-coordinate(s) at which the line(s) that are tangent to g(x) have a slope of 3.
- 2. <u>(V4.1 N)</u> (CI) A unit vector is defined as a vector whose length is one unit. Given the following vectors, find their respective unit vectors. (Cirrito 12.5.2, p430)

$$\overrightarrow{AB} = \begin{bmatrix} -3 \\ 5 \end{bmatrix} \qquad \overrightarrow{AB} = \begin{bmatrix} 5 \\ 2 \\ 4 \end{bmatrix}$$

- 3. (T.3.2, T3.3 R) (CI) Jana has mastered the "unit circle" and wants to apply this understanding to working through the following trig identities question: Given the fact that sin(x) = -3/8 and 180° < x < 270°, find each value: (Oxford 13E, p460)

 a. sin(2x)
 b. cos(2x)
 c. tan(2x)
 d. sin(90° x)
- 4. (C6.3 N) (CI) Maylis knows that the derivative of a function is $\frac{dy}{dx} = (x+2)(x-3)(e^x 1)$. So, she needs help in determining the: (Cirrito 20.2, p649)
 - a. *x*-coordinates of the extrema of the original function, y = f(x).
 - b. intervals of increase and decrease of the original function.
 - c. classification of the extrema as being either maximums or minimums or neither.
- 5. (F2.3 R) (CI) Given a function *f*, each solution of the equation f(x) = 0 is called *a zero of f*. Find the zeroes of each of the following functions: (Cirrito 6.1, 6.2, p173 & p177)

a.
$$s(x) = \sin(x)$$
 b. $L(x) = \log_5(x - 3)$ c. $r(x) = \sqrt{2x + 5}$ d. $p(x) = x^3 - 4x$

- 6. (F2.2, F2.4, F2.6 R) (CA) For the following "parent functions" $\Rightarrow E(x) = e^x$, $L(x) = \ln(x)$ and $r(x) = \sqrt{x}$, graph them and then for each function, determine (if applicable) their:
 - a. intercept(s) b. Asymptotes c. Domain and range

Math SL PROBLEM SET 44

Section B (Extended Response/Investigation)

7. (F2.2, C6.1) (CA) The total cost, *C*(*x*) in thousands of dollars, for manufacturing specialized cars is tabulated below: (Cirrito 21.2, p689)

Number of cars produced (x)	0	10	20	30	40	50
Total cost (in 000s) C(x)	580	805	980	1105	1180	1205

- a. Plot the points on a scatterplot (on your TI-84) & show me the scatterplot
- b. Use second differences to verify that a quadratic model is appropriate in this situation.
- c. Determine the equation of the quadratic that is appropriate in this situation.
- d. What is the average rate of increase in production costs for the first 10 cars?
- e. How much did it cost to produce (i) 10 cars? (ii) 11 cars?
- f. How much did it cost to produce the 11th car?
- g. Find the derivative of the cost function and then evaluate $\frac{dC}{dx}$ at x = 11. Interpret your result.
- 8. (C6.3, C6.6) (CI) From the following velocity-time graph, answer the following questions:
 - a. Find the speed of the bus at t = 2 s and at t = 8 s and at t = 12 s.
 - b. Find the average rate of change of speed between t = 2 s and t = 8 s.
 - c. Find the instantaneous rate of change of speed of the bus at t = 2 s, t = 8 s and t = 12 s.
 - d. What is the rate of change of speed called?
 - e. How far did the bus travel in the first 5 seconds?
 - f. How far did the bus travel in the first 10 seconds?
 - g. Find the average speed of the bus in the first 10 seconds.

