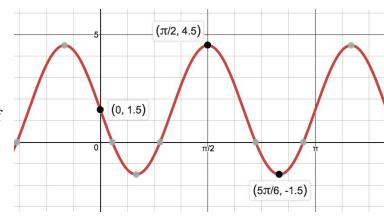
Math SL PROBLEM SET 40

Section A (Short Answer)


(A1.2 - N) (CI) Here is the Tamara "special question" ⇒ Use the properties of logarithms to write each logarithmic expression as a sum, difference or constant multiple of single logarithms (i.e. logarithms without products, quotients or exponents) (Cirrito 7.4, p221)

a. $\log_2(2m)$ b. $\ln \sqrt[5]{x}$ c. $\log_3(a^2b^3)$ d. $\log_{10}[10x(1+r)^r]$ e. $\ln\left(\frac{m^3}{n}\right)$

- 2. (F2.4, F2.8, C6.3 R,N) (CI) Zeinab throws a stone vertically upwards from the top of a building 250 m high. The height of the stone, h(t) meters above the ground *t* seconds after being thrown is modeled by the equation $h(t) = 250 + 100t 10t^2$, $t \ge 0$. (Cirrito 3.1.2, p65)
 - a. How long does it take for the stone to reach a height of 50 m above the top of the building?
 - b. How long does it take for the stone to reach a height of 50 m above the ground?
 - c. What is the maximum height of the stone?
 - d. How long does it take for the stone to reach the ground?
 - e. What is the speed of the stone when it hits the ground?
- 3. (T3.6 E) (CA) For the Δ TAM, side AT = 12 cm and side TM = 10.5 cm and \angle TAM = 21°. Determine the measure of side MA and hence the area of the triangle. (Cirrito 9.5.2, p297)
- 4. (A1.3 N) (CA) Consider the expression $(\frac{3}{x} 2x^2)^{12}$, (Cirrito 4.1.2, p100)
 - a. Find the first three terms of this expansion.
 - b. Find the coefficient of the x^{12} term OR justify that it does not exist.
 - c. Find the constant term of this expansion OR justify that it does not exist.
- 5. <u>(SP5.7 N)</u> (CA) The discrete random variable X has a distribution defined by the equation $P(X = x) = k(25 x^2)$ for $k \in \{1, 2, 3, 4, 5\}$. (Cirrito 16.1, p527)
 - a. Prepare a frequency table to help organize the information and to solve this problem.
 - b. Find the value of k.
 - c. Find $P(1 \le x \le 3)$
 - d. Prepare a histogram and a frequency polygon for *X*.
 - e. Find E(X) and Var(X).
 - f. Find E(3X+2)

Math SL PROBLEM SET 40

- 6. (T3.4 R) (CI) Given the function, y = f(x), pictured here, determine: (Cirrito 10.3, p337)
 - a. the amplitude,
 - b. the period,
 - c. the equation of the axis of the curve (or sinusoidal axis),
 - d. an appropriate equation for the function.
 - e. the intervals of increase on the domain of $0 \le x \le \pi$.
 - f. the exact values of the zeroes on the domain of $0 \le x \le \pi$.
 - g. where is $\frac{d}{dx}f(x) = 0$?

Section B (Extended Response/Investigation)

- 7. (F2.1, F2.3, C6.1 R,N) (CI) Consider the function $g(x) = \sqrt{x+4}$, (Cirrito 6.1, 6.2)
 - a. Determine the domain and range of y = g(x).
 - b. The function y = g(x) is now translated 6 units to the left and then horizontally compressed by a factor of 3. Write down the new equation of this transformed function.
 - c. Determine the equation of $y = g^{-1}(x)$.
 - d. What is the domain of $y = g^{-1}(x)$?
 - e. **(IB 7/HL)** Determine the simplified equation that results from the $\lim_{h\to 0} \frac{g(x+h) g(x)}{h}$ calculation.
 - f. Hence or otherwise, determine the rate of change of y = g(x) at the point where x = 12.
- 8. (C6.3 N) (CA) We will now make connections involving graphs of functions and the graphs of their derivatives. Working with the cubic function $f(x) = x^3 3x^2 9x$: (Cirrito 20.2, p649)
 - a. Graph the function $f(x) = x^3 3x^2 9x$. Sketch the function in your notebook and label the extrema
 - b. Find the x-values of the extrema (max/min points).
 - c. Determine the interval in which the function is **increasing** and determine the interval in which the function is **decreasing**.
 - d. Now determine the equation of the derivative of $f(x) = x^3 3x^2 9x$
 - e. Graph the derivative on the SAME grid as Q(a).
 - f. Determine the interval in which the derivative has positive values (i.e. $\frac{d}{dx}f(x) > 0$) and then determine the interval in which the derivative has negative values (i.e. $\frac{d}{dx}f(x) < 0$).
 - g. What do you notice about your answers to Q(c) and Q(f). Write a general conclusion.
 - h. Solve the equation $\frac{d}{dx}f(x) = 0$ and compare this answer to your answer to Q(b)