Math SL PROBLEM SET 31

Section A (Short Answer)

- 1. (<u>A1.1 E</u>) (CA) For the following geometric sequences, A_n , determine u_{10} , S_{10} as well as S_{∞} : (Cirrito 8.2.4, p263)
 - a. In $\{A_n\}$ where the terms are 200, 150, 112.5, 84.375,
 - b. In $\{A_n\}$ where $u_5 = 24$ and $u_8 = \frac{24}{27}$.
 - c. In $\{A_n\}$ where the terms are 100, 110, 121, 133.1,
- (<u>F2.6, F2.8 R</u>) (CA) Which is best: (i) to have money in a bank that pays 9 percent annual interest, (ii) one that pays 9/12 percent monthly interest, (iii) or one that pays 9/365 percent daily interest? Show calculations to support your decision. (NOTE: a bank is said to compound its annual interest when it applies a fraction of its annual interest to a fraction of a year.) (Cirrito 7.1.5, p207)
- 3. (F2.6, F2.8 R) (CA) (CONTINUATION) Inflation in the country of Mathylvania has reached alarming levels. Many banks are paying 100 percent annual interest, some banks are paying 100/12 percent monthly interest, a few are paying 100/365 percent daily interest and so forth. In trying to make sense of all these different bank promotions, Daniel decides to graph the function $E(x) = (1 + \frac{1}{x})^x$. What does the graph reveal about the sequence $v_n = E(n) = (1 + \frac{1}{n})^n$, where *n* is a positive integer? Calculate these specific values: v_1 , v_{12} , v_{365} , $v_{3156000}$. (Cirrito 7.1.5, p207)
- 4. (F2.6, F2.8 R) (CA) (CONTINUATION) The sequence in the previous problem has a limiting value. This sequence is so important that a special letter is reserved for the limiting value (as is done for π). We write $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. The $\lim_{n \to \infty}$ means "as *n* approaches ∞ " or "as *n* gets very large". For some additional work with this sequence, use your calculator to evaluate $\lim_{n \to \infty} (1 + \frac{0.09}{n})^n$. Make up a story to go with the question. (Cirrito 7.1.5, p207)
- 5. (C6.1 N) (CA) Determine the value of the following "limits" \Rightarrow i.e. determine the limiting value of f(x) as per $\lim_{n\to\infty} f(x)$, where f(x) is:
 - a. Let $f(x) = \frac{2x-1}{x+3}$, so in other words, evaluate $\lim_{n \to \infty} \frac{2x-1}{x+3}$.
 - b. Let $f(x) = 20\left(\frac{3}{4}\right)^x$, so in other words, evaluate $\lim_{n\to\infty} 20\left(\frac{3}{4}\right)^x$.
 - c. Let $f(x) = 2x^3 x$, so in other words, evaluate $\lim_{n \to \infty} 2x^3 x$.
 - d. Let $f(x) = \tan^{-1}(x)$, so in other words, evaluate $\lim_{n\to\infty} \tan^{-1}(x)$

Math SL PROBLEM SET 31

6. $(\underline{C6.1 - N})$ (CA) Continuing this work with understanding limits, evaluate the following limits (in other words, determine the limiting function value of f(x) in the following scenarios)

Section B (Extended Response/Investigation)

- 7. $(\underline{V4.3 N})$ (CI) The line L is defined by the parametric equations x(k) = 4 5k and y(k) = -2 + 3k. (Cirrito 12.7.1, p444)
 - a. Find the coordinates of three points on L.
 - b. Find the value of k that corresponds to the point (14, -8)
 - c. Show that the point (-1,4) does not lie on the line L.
 - d. Find the vector and Cartesian forms on the line L.
 - e. A second line, M, is defined parametrically by x(t) = a + 10t and y(t) = b 6t. Describe the relationship between M and L if a = 4 and b = -2.
 - f. Find the point at which the line L intersects with the line N, if the line N is defined parametrically as $x(\lambda) = 5 4\lambda$ and $y(\lambda) = -3 + 2\lambda$.
- 8. (<u>PS5.8 N</u>) (CA) To continue working with the concept of <u>binomial probability distributions</u>, answer the following questions that involve the following scenario: You are given 5 "unfair" dice, in which the probability of rolling a 5 or 6 is only 25% (or ¹/₄) and thus the probability of NOT rolling a 5 or 6 is 75% (or likewise ³/₄). Our "experiment" consists of rolling each of the 5 dice once and looking to see how many 5s or 6s we have at the end of the "experiment". (Cirrito 16.3.4, p544)

Math SL PROBLEM SET 31

- a. Use a tree diagram to show ALL possible outcomes of this experiment.
- b. How many different ways can you get 5s or 6s appearing 3 times?
- c. Determine how probable it is that we get the 5s or 6s appearing:
 - i. Once
 - ii. Twice
 - iii. Three times
 - iv. Four times
 - v. Five times
- d. Draw a probability histogram, where the *x*-axis is the number of 5s or 6s appearing and the *y*-axis is the probability of getting that number of 5s or 6s..
- e. Expand $(p+q)^5$.
- f. Now we will let $p = \text{probability of rolling a 5 or 6 (so <math>p = \frac{1}{4}$) and if we let q = probability of NOT rolling a 5 or 6 (so $q = \frac{3}{4}$). Use your expansion from Q(e) to calculate the probability of getting 5s or 6s to appear twice from our "experiment".
- g. Now let's use our calculator to do the same calculation in one step!!! Go to 2nd VARS (to the DISTR menu) and from there, scroll down to A: binompdf(. You will need to imput the number of trials (5) as well as the value of $p(\frac{1}{4})$ as well as the *x* value (2) and then "paste" that to the home screen. Finally, hit enter