Section A (Short Answer)

1. (F2.5, C6.1 - E) (CA) Let $f(x) = \frac{2x-6}{1-x}$ for $x \neq 1$. (Cirrito 5.3.5, p144)

- a. For the graph of f
 - i. Find the x-intercept;
 - ii. Write down the equation of the vertical asymptote;
 - iii. Find the equation of the horizontal asymptote.
- b. Find $\lim_{x\to\infty} f(x)$. That is, what is the "end behavior" of f(x) as x gets really big?
- (SP5.1 E) (CA) The following table shows the average weights (y kg) for given heights (x cm) in a population of men. (Oxford 10.2, p339; Oxford 10.3, p345)

Heights (x cm)	165	170	175	180	185
Weights (y kg)	67.8	70.0	72.7	75.5	77.2

- a. The relationship between the variables is modelled by the regression equation y = ax + b.
 - i. Find the value of a and b;
 - ii. Hence, estimate the weight of a man whose height is 172cm.
- b. Write down the correlation coefficient
- c. Which *two* of the following describe the correlation between the variables:

Strong	Zero	Negative	
Positive	No Correlation	Weak	

- 3. (T3.2, T3.3 N) (CI) Let $sin\theta = \frac{\sqrt{5}}{3}$, where θ is *acute*. (Cirrito 10.1.2, p316)
 - a. Which quadrant is θ in?
 - b. Find $\cos(\theta)$ and $\tan(\theta)$

$$\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$$

- c. Show that
- d. Find the value of $\sin^2(\theta) + \cos^2(\theta)$

- 4. <u>(F2.1, A1.3 E) (CI)</u> Let $f(x) = (x 5)^3$, for $x \in R$. <u>(Cirrito 5.4.2, p157; Cirrito 5.4.1, p148)</u> a. Find $f^{-1}(x)$.
 - b. Let g be a function so that $(f \circ g)(x) = 8x^6$. Find g(x).
 - c. Expand $(x 5)^3$.
- 5. (F2.6, A1.2 R) (CI) Given that $2^m = 8$ and $2^n = 16$, (Cirrito 7.1.2, p201)
 - a. Write down the value of m and n.
 - b. Hence or otherwise solve $8^{2x+1} = 16^{2x-3}$.
- (A1.1 N) (CA) In an arithmetic sequence, the first term is 2 and the second term is 5. (Cirrito 8.1.1, p241)
 - a. List the first 5 terms of this sequence.
 - b. Find the common difference.
 - c. Find the eighteenth term.
 - d. Find the sum of the first eight terms of the sequence.

Section B (Extended Response/Investigation)

(SP5.1,3 - E) (CI) The weekly wages (in dollars) of 80 employees are displayed in the cumulative frequency curve below. (*Cirrito 13.2, 471; Oxford 8.5, p271*)

- a. Find:
 - i. The weekly median wage
 - ii. The interquartile range of the weekly wages

b. The box-and-whisker plot below displays the weekly wages of the employees.

Write down the value of

- i. a
- ii. b
- iii. c
- c. Employees are paid \$20 per hour. Find the median number of hours worked per week.
- d. Employees are paid \$20 per hour. Find the number of employees who work more than 25 hours per week.
- 8. (F2.3, F2.4 E) (CA) Consider the function $f(x) = x^2 4x + 1$. (Cirrito 2.4.2, p44)
 - a. Sketch the graph of *f* , for $-1 \le x \le 5$.
 - b. This function can also be written as $f(x) = (x p)^2 3$. Write down the value of p.
 - c. The graph of g is obtained by reflecting the graph of f in the x-axis, followed by a translation of $\begin{pmatrix} 0 \\ 6 \end{pmatrix}$. Show that $g(x) = -x^2 + 4x + 5$.
 - d. The graphs of f and g intersect at two points. Write down the *x*-coordinates of these two points.
 - e. A linear function, h(x) = mx 4 is drawn on the same grid as y = f(x). Find all possible values of *m* such that the line h(x) and the quadratic function do not intersect.