Problem Set 6.1

BIG PICTURE of this Unit

- How can we extend our geometry skills with triangles to go beyond right triangles to (i) obtuse triangles and (ii) circles and Cartesian Planes?
- What do triangles have to do with sinusoidal functions in the first place?
- How can we connect previously learned function concepts and skills to sinusoidal functions?
- How can use the equation of a sinusoidal function be used to analyze for key features of a graph of a sinusoidal curve?
- When and how can triangles and sinusoidal functions be used to model real world scenarios?
- 1. (CI) Use the triangles to find the given trigonometric ratios (express final answers as non-reduced fractions): {1}

2. (CA) Use your calculator to evalaute the following (make sure your calculator is set in "degree" mode) {1}

(i) sin(40°)	(ii) cos(35°)	(iii) tan(70°)	(iv) sin(85°)	(v) cos(53°)	(vi) tan(11°)
(vii) sin ⁻¹ (0.75)	(viii) sin ⁻¹ (0.20)	$(ix) \cos^{-1}(0.6)$	$(x)\cos^{-1}(1.2)$	$(xi) \tan^{-1}(0.30)$	$(xii) \tan^{-1}(1.75)$

3. (CI) Understanding Meanings

- a. You know that sin(20) = 0.342. If sine can be understood as a "function", explain what the input of 20 means and explain what the output of 0.342 means.
- b. You know that $\cos^{-1}(0.6) = 53.13$. If \cos^{-1} can be understood as a "function", explain what the input of 0.6 means and explain what the output of 53.13 means.
- c. Since you know that $\cos^{-1}(0.6) = 53.13$, use your calculator to evaluate $\cos(53.13)$. Now explain why \cos^{-1} is referred to as "inverse cosine."

4. (CI) It is known that $\tan^{-1}\left(\frac{6}{9}\right) = 33.7$. Draw a diagram of a right triangle, wherein you label the sides and angles

of the triangle, so that you demonstrate the **meaning** of the statement $\tan^{-1}\left(\frac{6}{9}\right) = 33.7$. {1}

5. (CA) Find the value of x in the following diagrams. Round to the nearest *tenth* if necessary. Then, determine the measure of all three angles in each triangle. $\{1,2\}$

6. (CA) Calculate the length of the indicated side: {1,2}

(f)

79

7. (CA) Calculate the measure of the indicated angle: $\{1,2\}$

Higher Level Questions for More Complex Concepts OR an EXTENSION of basic concepts involved with triangle trigonometry and sinusoidal functions.

1. (CI) Use the triangle given to find the given **secondary trigonometric ratios** (express final answers as non-reduced fractions):

- 2. (CI) It is known that $\sec(66.4) = \frac{r}{x}$. Draw a diagram of a right triangle, wherein you label the sides and angles of the triangle, so that you demonstrate the **meaning** of the statement $\sec(66.4) = \frac{r}{x}$. Hence, evaluate the following (in terms of *r* and *x*):
 - a. $\cos(66.4)$ b. $\csc(66.4)$ c. $\cot(66.4)$ d. $(\cos(66.4))^2 + (\sin(66.4))^2$