BIG PICTURE of this Unit - How can we extend our algebra skills to interchange between standard and factored form of polynomial equations? (i.e. synthetic division, factoring) - Can we use our new polynomial algebra skills in order to find a method for solving EVERY polynomial equation (especially those that don't factor?) - How can use the equation of a polynomial to analyze for key features of a graph of a polynomial (i.e. end behavior, multiplicity of roots, optimal points, intervals of increase/decrease). - When and how can polynomial functions be used to model real world scenarios? This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having DISCUSSIONS about how to think and work through and then present the solutions to the following questions. So, discuss & prepare solutions to the following questions. Record the key ideas of your discussions/solutions in your notebook. 1. The table included shows the population of Thunder Bay from 1966 to 1998. Using *x* as the number of years since 1966, determine a quartic model for this data set. (17) | Year | 1966 | 1976 | 1986 | 1996 | 1998 | |------------|---------|---------|---------|---------|---------| | Population | 143,673 | 119,253 | 122,217 | 125,562 | 128,607 | - a. Write the equation as y = P(x) where each coefficient will be rounded to two decimal places. - b. Explain why Mr. S has decide to restrict the domain for this model to $\{x \in R \mid 0 \le x \le 32\}$. - c. Determine when the population was 122,775. - d. When was the population of Thunder Bay at a minimum? What was this minimum population. - 2. To introduce one major algebraic tool for working with factorizing polynomials, please watch the following video dealing with Synthetic Division (https://youtu.be/5dBAdzl2Mns). Then, with the following questions, use synthetic division to simplify and state any remainder as a fraction: a. $$(2x^3 - 7x^2 - 7x + 19) \div (x - 1)$$ b. $$(6x^4 + 13x^3 - 34x^2 - 47x + 28) \div (x + 3)$$ c. $$(x^3 - 7x - 6) \div (x - 3)$$ d. $$(2x^3 + x^2 - 22x + 20) \div (x + 2)$$ e. $$(6x^3 - 2x - 15x^2 + 5) \div (x - 1)$$ f. $$(12x^4 - 56x^3 + 59x^2 + 9x - 18) \div (2x + 1)$$ - 3. With this question, you will (hopefully) see the connection between (i) evaluating a polynomial and (ii) the remainder that results from a division. {11} - a. Example #1 i. Evaluate P(2) if $$P(x) = x^2 - 6x - 7$$ ii. Divide $$P(x) = x^2 - 6x - 7$$ by $x - 2$ using synthetic division. - iii. What is the remainder after the division? - b. Example #2 i. Evaluate P(2) if $$P(x) = 4x^3 - 2x^2 - 6x - 1$$ ii. Divide $$P(x) = 4x^3 - 2x^2 - 6x - 1$$ by $x - 2$ using synthetic division. - iii. What is the remainder after the division? - c. Example #3 i. Evaluate P(-3) if $$P(x) = 2x^3 - x^2 - 7x + 6$$ ii. Divide $$P(x) = 2x^3 - x^2 - 7x + 6$$ by $x + 3$ using synthetic division. - iii. What is the remainder after the division? - 4. The following exercise is based on the EXTREMA and ZEROS of a polynomial function. From the description of each polynomial function, sketch a possible graph of each function clearly showing the correct number of extrema or zeros. DO NOT repeat any graphs! If it is not possible to sketch a function fitting the criteria, EXPLAIN why. {1} - a. 5th degree polynomial with 4 x-intercepts - b. 5^{th} degree polynomial with 2 extrema - c. 4th degree polynomial with 2 x-intercepts - d. 6th degree polynomial with 3 extrema - 5. Use DESMOS and your TI-84 to graph the parent function $f(x) = \frac{1}{x}$ and sketch it in your notes. Then, as a second function, graph the rational function $g(x) = \frac{1}{x+3} + 1$ and sketch it in your notes. Explain the form of the second equation can be called "transformational form." $\{4,7\}$ Convert the following rational function equations from transformation form to linear/linear form. In each case, list the transformations that were applied to the parent function of $y(x) = \frac{1}{x}$. (i.e. Write the following as ONE fraction (think adding fractions)): {4,7} $$a. \quad y(x) = \frac{2}{x} + 3$$ b. $$y(x) = 4 - \frac{3}{x}$$ a. $$y(x) = \frac{2}{x} + 3$$ b. $y(x) = 4 - \frac{3}{x}$ c. $y(x) = \frac{1}{x - 2} - 4$ ## Higher Level Questions for More Complex Concepts OR an EXTENSION of basic concepts involved with Polynomial and Rational Functions. - Go online and research the "Remainder Theorem". Then, practice finding the remainder in the following divisions. - Find the remainder when $x^2 + 6x 17$ is divided by x 1. - Find the remainder when $4x^2 x + 3$ is divided by x + 2. - Find the remainder when $2x^3 x^2 x 1$ is divided by x 1. - Find the remainder when $x^4 x^3 x^2 x 1$ is divided by x 3. - Find the remainder when $x^4 5x^3 + x^2 10x 5$ is divided by 2x + 3. - Solve for k: When $x^3 + kx + 1$ is divided by x 2, the remainder is -3. - Solve for k: When $2x^4 + kx^2 3x + 5$ is divided by x 2, the remainder is 3. - When $x^3 + kx^2 2x 7$ is divided by x + 1, the remainder is 5. What is the remainder when it is divided by x 1? - When the polynomial $x^n + x 8$ is divided by x 2 the remainder is 10. What is the value of n? - General Conclusions Parent Functions and End Behaviour and Multiplicity and Zeroes and Extrema: - What is the general appearance of an even degree polynomial function? An odd degree polynomial function? a. - What are the generalized end behaviours of even degree polynomials? - What are the generalized end behaviours of odd degree polynomials? - How can you predict the maximum number of zeroes of a polynomial? - How do you predict the appearance of a function near the x-axis if the multiplicity of its zeroes is even? - f. How do you predict the appearance of a function near the x-axis if the multiplicity of its zeroes is odd? - How can you predict the maximum number of extrema in a polynomial?