BIG PICTURE of this Unit

- How can we extend our algebra skills to interchange between standard and factored form of polynomial equations? (i.e. synthetic division, factoring)
- Can we use our new polynomial algebra skills in order to find a method for solving EVERY polynomial equation (especially those that don't factor?)
- How can use the equation of a polynomial to analyze for key features of a graph of a polynomial (i.e. end behavior, multiplicity of roots, optimal points, intervals of increase/decrease).
- When and how can polynomial functions be used to model real world scenarios?

This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having DISCUSSIONS about how to think and work through and then present the solutions to the following questions. So, discuss & prepare solutions to the following questions. Record the key ideas of your discussions/solutions in your notebook. Then, once you have had your discussions, present your solutions on the board. Solutions do NOT necessarily NEED to be correct – they simply form the basis for DISCUSSIONS!!!! If your group has (i) multiple solutions that lead to the same answers OR (ii) same/different solutions that lead to different answers, present them ANYWAY!!

- 1. Use DESMOS as well as your TI-84 to graph $y = \frac{1}{x}$. Use your graph to answer the following questions: {1,4}
 - a. Make a sketch of this function in your notes.
 - b. Label the TWO key points (which are (1,1) and (-1,-1)) on this function and write them down.
 - c. Write down the equations of the asymptote(s).
 - d. State the domain and range.
 - e. State the zero(s) (if they exist).
 - f. State the extrema (if they exist).
 - g. State the intervals of increase and decrease.
 - h. Is the function continuous or discontinuous. Explain your anwer.
- Use DESMOS as well as your TI-84 to graph and then compare (what do all the graphs and equations share in common?) What do you notice about the way an equation is written and the way a graph looks? Include labeled sketches in your notes. {16}
 - a. y = 2(x 1)
 - b. y = 2(x-1)(x+1)
 - c. y = 2(x-1)(x+1)(x+2)
 - d. y = 2(x-1)(x+1)(x+2)(x-3)

Problem Set 5.2

- 3. Evaluate the function $g(x) = \frac{1}{x+2}$ for the following values of x:
 - (i) x = 3 (ii) x = 8 (iii) x = 28 (iv) x = 58 (v) x = 98
 - a. What are you noticing happening with both the x-values and the y-values?
 - (i) x = -1 (ii) x = -1.5 (iii) x = -1.9 (iv) x = -1.99 (v) x = -1.999
 - b. What are you noticing happening with both the x-values and the y-values?
 - c. Graph the function on your TI-84. Explain how the picture of the graph now helps you make sense of you answers to (a) and (c).
- 4. Given the polynomial function, $p(x) = 2x^3 3x^2 14x + 15$, answer the following questions: {1,4}
 - a. Graph the function on DESMOS as well as your TI-84 calculator.
 - b. Find the zeroes.
 - c. Given these zeroes, write the equation in factored form.
 - d. Go to wolframalpha and factor this equation. How does it compare to your factors from part c?
 - e. Go on line to find out what a "local maximum" is. In your notebooks, record your understanding of this term. Find the local maximum of this function.
 - f. Go on line to find out what a "local minimum" is. In your notebooks, record your understanding of this term. Find the local minimum of this function.
 - g. Go on line to find out what it means for a function to be "increasing". On what domain interval are the function values increasing?
 - h. Go on line to find out what it means for a function to be "decreasing". On what domain interval are the function values decreasing?
 - i. Go on line to find out what "end behaviour" means. State the end behaviours of this function.
- 5. Use DESMOS as well as your TI-84 to graph these following "parent" functions. Include a labeled sketch in your notes: (i) $f(x) = x^3$ (ii) $g(x) = x^4$ (iii) $y = \frac{1}{x}$. Label the "important" features/parts of each function. {4}

- 6. SureGrip Athletic shoes tracks the relationship between total sales of shoes and the advertising expenses. The function used to model the relationship is $S(d) = -\frac{1}{4,000}d^3 + \frac{3}{20}d^2$, where S is shoes sales in millions of dollars and d is the expenses, measured in tens of thousands of dollars. {4,8,17}
 - a. Explain what the ordered pair S(200) = 4000 means in the context of this model.
 - b. Graph the function, given that the domain for this problem is restricted to $\{d \in R \mid 50 \le d \le 500\}$.
 - c. What advertising expense (cost) would optimize the sale of shoes? What would be the optimal sales of shoes (revenues)?
 - d. If the company wants to have sales of 6.5 billion dollars (S = 6500), how much should they spend on advertising expenses?
 - e. In which domain interval are the sales decreasing? What might this mean for the company?
- 7. Roller Coaster Design {1,4,17}

Your design team has the following "profile" of part of a roller coaster (the x-axis represents horizontal distance and the y-axis represents vertical distance). Your initial task is to find a polynomial model for the profile of the roller coaster.

You will carry out this modeling in three ways:

(a) Using DESMOS, program in the standard form of a cubic equation $(y = ax^3 + bx^2 + cx + d)$ or quartic $(y = ax^4 + bx^3 + cx^2 + dx + g)$ and add sliders for values of a,b,c,d and g. Then adjust the sliders to get an equation that matches this "profile" pictured here. (see picture included for setting up sliders)

- (b) Use the graph to read data points from the graph, then your TI-84 to determine the equation (cubicreg/quartreg)
- (c) (NO CALCULATORS ALL students should learn how to do this) Use algebra & skills you've learned from your Quadratics Unit to determine an equation. (HINT: factors and x-intercepts)

Higher Level Questions for More Complex Concepts OR an EXTENSION of basic concepts involved with Polynomial and Rational Functions.

Use DESMOS to conduct the following investigation:

- 1. Graph the following functions: (i) f(x) = x (ii) $f(x) = x^3$ (iii) $f(x) = x^5$ (iv) $f(x) = x^7$.
- 2. Explain what the function "looks like" when the exponent is odd (i.e. x^{2n+1} , where $n \ge 0$)
- 3. Graph the following functions: (i) $f(x) = x^2$ (ii) $f(x) = x^4$ (iii) $f(x) = x^6$ (iv) $f(x) = x^8$.
- 4. Explain what the function "looks like" when the exponent is even (i.e. x^{2n} , where $n \ge 1$)