BIG PICTURE of this Unit

- How can we extend our algebra skills to interchange between standard and factored form of polynomial equations? (i.e. synthetic division, factoring)
- Can we use our new polynomial algebra skills in order to find a method for solving EVERY polynomial equation (especially those that don't factor?)
- How can use the equation of a polynomial to analyze for key features of a graph of a polynomial (i.e. end behavior, multiplicity of roots, optimal points, intervals of increase/decrease).
- When and how can polynomial functions be used to model real world scenarios?
- 1. Connecting to function concepts from previous units, use DESMOS to graph the following functions and their inverses: {4,18}
 - a. Graph $f(x) = x^2$, $g(x) = x^4$, $h(x) = x^6$ and their inverses.
 - b. Graph $f(x) = x^1$, $g(x) = x^3$, $h(x) = x^5$ and their inverses.
 - c. Determine the equation of the inverse functions for $f(x) = x^3$, $g(x) = x^4$, $h(x) = x^5$, $k(x) = x^6$
- 2. Connecting to function concepts from previous units, use DESMOS and your TI-84 to graph the following functions and investigate the following transformations: {4,18}
 - a. Graph the parent function of $f(x) = x^3$.
 - b. Now, graph h(x) = f(x-3) (that is, graph $h(x) = (x-3)^3$) and explain what transformation(s) were applied to $f(x) = x^3$.
 - c. Now, graph h(x) = f(x-3) 2 (that is, graph $h(x) = (x-3)^3 2$) and explain what transformation(s) were applied $f(x) = x^3$.
 - d. Now, graph $h(x) = -\frac{1}{2}f(x-3) 2$ (that is graph $h(x) = -\frac{1}{2}(x-3)^3 2$) and explain what transformation(s) were applied $f(x) = x^3$.
 - e. Rewrite the equation for $h(x) = -\frac{1}{2}(x-3)^3 2$ in standard form.
 - f. Now, use DESMOS only, to graph the inverse of $h(x) = -\frac{1}{2}(x-3)^3 2$. Is the inverse a function? Why or why not?

- 3. (CA) Find the domain interval(s) in which $P(x) = -4x^4 6x^3 + 28x^2 + 18x 36$ is increasing. {1,4}
- 4. (CI) Factor the following cubic polynomials, given the information about one of the factors {10,11,13}
 - a. Factor completely $P(x) = 4x^3 2x^2 6x 2$, given that p(-0.5) = 0
 - b. Factor $P(x) = 2x^3 x^2 7x + 6$ completely, knowing that when P(x) is divided by x 1, there is no remainder.
 - c. Factor $P(x) = -4x^4 6x^3 + 28x^2 + 18x 36$ completely, knowing that BOTH p(1) = 0 and p(2) = 0.
- 5. (CI) Working with the function $f(x) = \frac{3x-2}{x-2}$, answer the following analysis questions: {7,18}
 - a. Determine the equation(s) of the vertical and horizontal asymptotes and hence detemine the domain and range of $f(x) = \frac{3x-2}{x-2}$.
 - b. Find the x-intercept and y-intercept of y = f(x).
 - c. Given your work in Q(a) and Q(b), sketch the function.
 - d. Show that $\frac{3x-2}{x-2} = 3 + \frac{4}{x-2}$.
 - e. Hence (given your work in Q(d)), state how the function $f(x) = \frac{3x-2}{x-2}$ has been transformed from its parent function of $y = \frac{1}{x}$.
 - f. Determine the equation of the inverse of $f(x) = \frac{3x-2}{x-2}$.
 - g. (HL QUESTION) Verify that your equation of the inverse is correct by composing $f \circ f^{-1}(x)$.

- 6. (CA) Solve the following inequalities: {4,15}
 - a. Find the domain interval(s) in which $-x^3 2x^2 + 4x + 5 > 0$.
 - b. Find the domain interval(s) in which $0 < x^4 3x^3 + 3x^2 3x + 2$.
 - c. Find the domain interval(s) in which $\frac{2x-3}{3x+5} > 0$.
- 7. (CI) The equation of a polynomial is $f(x) = -2(x+2)^3(2x-1)^2(x+5)$. Determine: {1,6}
 - a. State the end behaviour of y = f(x).
 - b. State the zeroes of y = f(x)
 - c. Sketch y = f(x), showing the correct behaviour of the function at the zeroes and at the "ends".