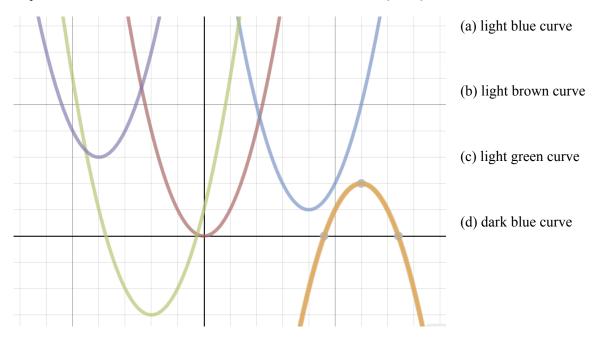
BIG PICTURE of this UNIT:	 How do we WORK WITH & EXTEND the concept of "functions" Why are quadratic equations written in different forms? How do we EXTEND and APPLY our knowledge of quadratic functions, beyond the basics of IM2?
---------------------------	--

This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having DISCUSSIONS about how to think and work through and then present the solutions to the following questions. So, discuss & prepare solutions to the following questions. Record the key ideas of your discussions/solutions in your notebook. Then, once you have had your discussions, present your solutions on the board. Solutions do NOT necessarily NEED to be correct – they simply form the basis for DISCUSSIONS!!!! If your group has (i) multiple solutions that lead to the same answers OR (ii) same/different solutions that lead to different answers, present them ANYWAY!!

1. (CI) Given quadratic function
$$f(x) = -\frac{1}{2}(x+8)(x-6):\{3,5,6\}$$

- a. find the zeroes
- b. find the axis of symmetry
- c. find the vertex
- d. find the y-intercept
- e. write the equation in standard form
- f. write the equation in vertex form
- g. Sketch the parabola, labelling key features
- h. State the domain interval in which the function values are increasing.
- 2. A quadratic function is defined by the equation $f(x) = x^2 4x 5$. {3,5,6}
 - a. Determine the equation of the axes of symmetry.
 - b. Determine the vertex of this parabola.
 - c. Rewrite the equation in vertex form and state the optimal value of the quadratic function.
 - d. Find the zeroes of the parabola.
 - e. Sketch the parabola, labelling the vertex and the y-intercept.
 - f. Solve f(x) = -5.
 - g. State the domain interval in which the function values are decreasing.

PS 4.3 - Review of Functions & Quadratics Unit 4 – Function Concepts with Quadratics


3. Expand and simplify the following binomial products: {7,8}

a.
$$(2x+3)(3x+4)$$

b. $-(3a-8)(2a+3)$
c. $\frac{1}{2}(5x+8)(x-6)$
d. $(4-3x)^2$
e. $(5x-6)(5x+6)$
f. $5(2t-9)(6-t)$
g. $-5(11-t)(3t+2)$
h. $(2x-1)^2(x-4)^2$

- 4. Factor the following trinomials: {7,8}
 - a. $6x^2 13x 5$ b. $3x^2 + 10x 25$ c. $10x^2 + 17x + 3$ d. $6x^2 7x 3$ e. $12x^2 28x 5$ f. $3x^2 32x + 45$ g. $14x^2 9x + 1$ h. $12x^3 8x^2 15x$
- 5. Solve the following quadratic equations. {9}

a.	$x^2 - 5x - 14 = 0$	b.	$3x^2 - 5x - 2 = 0$	c.	$4x^2 - 3 = 4x$
d.	$(x+3)^2 = 9$	e.	$-2(x+\frac{1}{2})^2 = -32$	f.	$4.9(t-5)^2 - 25 = 50$

6. (CI) You are given graphs of parabolas in the form of $y = (x - h)^2 + k$. PREDICT the equations of each one & give a reason for your prediction. The parent function, $y = x^2$, is the purple curve. After each equation, describe how the parent function was transformed to create the new function. {3,5,6}

7. (CI) Sketch the graph of $f(x) = 2(x + 4)^2 - 8$ by transforming the graph of $y = x^2$ (HINT: What transformations are you being asked to make?) Sketch both graphs, label each graph. Label the points (1,1) and (-1,1) on the parent function. Then label the corresponding, transformed points (i.e. where do these two original points wind up, AFTER the transformation?) {3,5,6}

Higher Level Questions for More Complex Concepts OR an EXTENSION of basic concepts involved with Quadratic Functions.

- 1. (CI) Quadratic Composites: given the quadratic function $g(x) = x^2 2x 8$: {25}
 - a. Determine the zeroes of g(x).
 - b. Now let $f(x) = 2^x$. Write the equation for the composite $g \circ f(x)$. Hence, solve $g \circ f(x) = 0$.
 - c. Again, let $f(x) = 2^x$. Write the equation for the composite $f \circ g(x)$. Hence, solve $f \circ g(x) = 1$.
 - d. Show that $2^{2x-1} = \frac{1}{2} (2^x)^2$. HENCE, solve $2^{2x-1} 2^{x+1} 6 = 0$ and show that $\log_2 6$ is a solution.
- 2. Explain what a complex number is and why mathematicians "invented" complex numbers. {21,22}
- 3. Quadratic Composites: given the quadratic function $g(x) = x^2 2x 8$: {23, 25}
 - a. Determine the zeroes of g(x).
 - b. Now let $f(x) = x^2$. Write the equation for the composite $g \circ f(x)$. Hence, solve $g \circ f(x) = 0$.