BIG PICTURE of this UNIT:	 How do we WORK WIT Why are quadratic equati How do we EXTEND and 	H & EXTEND the concept of "functions" ons written in different forms? d APPLY our knowledge of quadratic functions, beyond the
	basics of IM2?	

This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having DISCUSSIONS about how to think and work through and then present the solutions to the following questions. So, discuss & prepare solutions to the following questions. Record the key ideas of your discussions/solutions in your notebook. Then, once you have had your discussions, present your solutions on the board. Solutions do NOT necessarily NEED to be correct – they simply form the basis for DISCUSSIONS!!!! If your group has (i) multiple solutions that lead to the same answers OR (ii) same/different solutions that lead to different answers, present them ANYWAY!!

- 1. (CA) A ball is thrown from the rooftop of a building and the relationship between its height (in meters) and time of flight (in seconds) is modeled by the equation $h(t) = -5t^2 + 5t + 30$. Graph the function on your TI-84 and use the TI-84 to answer the following questions: {4,5,6,15,16}
 - a. State your Window Settings from the TI-84
 - b. How tall is the building?
 - c. When will the ball hit the ground?
 - d. the domain and range (in context)
 - e. When does the ball reach is highest point? How high?
 - f. Sketch the function
 - g. Factor the equation $h(t) = -5t^2 + 5t + 30$ and HENCE explain how you could use algebraic skills to perform the SAME analysis
- 2. Expand and simplify the following binomial products: {7,8}

a.	(x+8)(x+4)	b.	-(a-8)(2a+3)	C.	$\frac{1}{2}(x+8)(x-6)$	d.	$(2x-5)^2$
e.	(x-6)(x+6)	f.	5(t-9)(6-t)	g.	-5(t-13)(3t+2)	h.	$(2x-1)(x-4)^2$

3. Factor the following trinomials: {7,8}

a.	$x^2 + 5x + 4$	b. $x^2 + 15x + 50$	c. $x^2 + 5x - 24$	d.	$x^2 + 6x - 72$
e.	$x^2 - 6x + 9$	f. $x^2 - 36$	g. $x^2 + x - 72$	h.	$x^2 - 10x + 24$

4. (CA) Use your TI-84 to graph $f(x) = -2x^2 + 6x + 10$ in an appropriate view window and then use the TI-84 to determine the following. Finally, sketch the parabola, labeling the key points/features; {3,4,6}

(i) Window Settings on TI-84	(ii) Zeroes	(iii) Axis of Symmetry
(iv) Optimal point	(v) y-intercept	(vi) Sketch

5. (CA) Use your TI-84 to graph $f(x) = \frac{1}{2}(x-4)(x+10)$ in an appropriate view window and then use the TI-84 to determine the following. Finally, sketch the parabola, labeling the key points/features; {3,4,6}

(i) Window Settings on TI-84	(ii) Zeroes	(iii) Axis of Symmetry
(iv) Optimal point	(v) y-intercept	(vi) Sketch

6. (CA) Use your TI-84 to graph $f(x) = 2(x+4)^2 - 18$ in an appropriate view window and then use the TI-84 to determine the following. Finally, sketch the parabola, labeling the key points/features; {3,4,6}

(i) Window Settings on TI-84	(ii) Zeroes	(iii) Axis of Symmetry
(iv) Optimal point	(v) y-intercept	(vi) Sketch

- 7. (CA) The profits of a company in its first 13 months of operations are modelled by the quadratic function $P(m) = -\frac{1}{4}(m-6)^2 + 4$ where m is the number of months (and m = 1 represents January 1st) and P(m) is measured in billions of pesos. {7,9,15,16}
 - a. Explain why the domain of the function is $\left\{m \in Z^+ \mid 0 \le m \le 13\right\}$.
 - b. Determine when the company "breaks even".
 - c. Determine in which month the company maximizes its profits.
 - d. What are the company's maximum profits?
 - e. Solve and interpret P(m) < 0 given that the domain is $\left\{m \in Z^+ \mid 0 \le m \le 13\right\}$
 - f. For what values of m are the profits DECREASING? Explain how you determined your answer.
 - g. Solve P(m) = -12 and interpret

Higher Level Questions for More Complex Concepts OR an EXTENSION of basic concepts involved with Quadratic Functions.

- Mr. S. can sell 500 apples per week when he charges 50 cents per apple. Through market research, his wife (being smarter than Mr. S of course) knows that for every price increase of 2 cents per apple, he will sell 10 less apples. {7,9,15,16}
 - a. Determine an equation that can you used to model Mr. S.'s expected revenues.
 - b. What price should he charge to maximize his revenues?
 - c. What is his maximum revenue?
 - d. How many price increments are required such that his business has NO revenue?
- 2. A company prints and sells math textbooks. Their revenues are modelled by the quadratic equation $R(b) = -0.1b^2 + 15b 120$, where R is revenue in tens of thousands of dollars for the sale and printing of b thousands of textbooks. The expenses for printing and selling the b thousands of textbooks (E, in tens of thousands of dollars) are given by the linear equation E(b) = 100 + b. {7,9,15,16}
 - a. What is the profit/loss if 30,000 books are printed & sold? If 130,000 books are printed & sold?
 - b. How many books must be printed and sold is the profit is to be \$1,800,000?
 - c. How many books must be printed & sold if the company is to break even?
 - d. When does the company achieve its maximum profit? What is the maximum profit?
 - e. When does the company lose money? Explain how you know.
- 3. A selection of contest questions from the Canadian Mathematics Competition:
 - a. If $f(x) = x^2 7x + k$ and f(k) = -9, then find the value of f(-1)
 - b. Find the shortest distance between the parabola $f(x) = 4x^2 + 2$ and $g(x) = -3x^2 4$
 - c. Find the minimum value of the function $f(x) = 2^{x^2 2x}$.
 - d. Given that m and n are the roots of the equation $7x^2 + 9x + 21 = 0$, find the numerical value of (m+7)(n+7).