PS 4.10 - Review of Functions & Quadratics Unit 4 – Function Concepts with Quadratics

BIG PICTURE of this UNIT:	 How do we WORK WITH & EXTEND the concept of "functions" Why are quadratic equations written in different forms? How do we EXTEND and APPLY our knowledge of quadratic functions, beyond the basics of IM2?
---------------------------	--

This lesson will be based upon a STUDENT DIRECTED DISCUSSION model in your groups, you should be having DISCUSSIONS about how to think and work through and then present the solutions to the following questions. So, discuss & prepare solutions to the following questions. Record the key ideas of your discussions/solutions in your notebook. Then, once you have had your discussions, present your solutions on the board. Solutions do NOT necessarily NEED to be correct – they simply form the basis for DISCUSSIONS!!!! If your group has (i) multiple solutions that lead to the same answers OR (ii) same/different solutions that lead to different answers, present them ANYWAY!!

- 1. Write the equations of the following parabolas: {18}
 - a. It has a vertex at (4, -3) and passes through (2, -15).
 - b. It has a y intercept of -2 and passes through the points (1, 0) and (-2, 12).
- 2. (CI) Find the roots of the quadratic equations: {9,10}

a.
$$f(x) = 2x^2 + 13x + 15$$

b. $f(x) = 3x^2 - 11x + 10$
c. $f(x) = 3x^2 - 7x - 6$

- 3. (CI) Solve the quadratic equations: {9,10}
 - a. $0 = 6x^2 + 23x + 7$ b. $36x^2 = -39x + 35$
- 4. Factor the following quadratic expressions: {7,8}
 - a. $6x^2 + 11x 10$ b. $8x^2 - 18x - 5$ c. $9x^2 + 101x + 22$

5. Use a GRAPH to help you factor the following quadratic functions. Include an explanation as to WHY and HOW a graph can help you write an equation in factored form. {4,7,8}

a.
$$2x^2 + 13x + 15$$

b. $3x^2 - 11x + 10$
c. $3x^2 - 7x - 6$

- 6. (CI) Find the roots of $9(x-3)^2 16(x+1)^2 = 0$ {7,8}
- 7. Mr. S. is given the equation $\frac{1}{x-3} + \frac{1}{x+1} = 1$ and is being asked to solve for x; {7,8}
 - a. Graph the system $f(x) = \frac{1}{x-3} + \frac{1}{x+1}$ and g(x) = 1 and find the intersection point(s).
 - b. Explain WHY Mr S uses this system to solve the original equation.
 - c. Graph the parabola $k(x) = x^2 4x 1$ and find the zeroes. What do you notice, given your work in the previous parts of this question?

Mr. S now has NO calculator, so must provide an algebra based solution for this problem. He carries out the following steps:

$$\frac{1}{x-3} + \frac{1}{x+1} = 1$$

(x+1)+(x-3) = 1(x-3)(x+1)
2x-2 = x² - 2x - 3
0 = x² - 4x - 1

- d. Explain what Mr. S. did to get the second line of his solution.
- e. Given the work & explanations, solve the following:

i.
$$\frac{1}{x+3} + \frac{1}{x-3} = 1$$
 ii. $\frac{1}{x} + \frac{1}{x+1} = \frac{5}{6}$

Higher Level Questions for More Complex Concepts OR an EXTENSION of basic concepts involved with Quadratic Functions.

- 1. Graph the following complex numbers and hence or otherwise, determine |z| for each complex number.
 - a. z = 3 + 2i
 - b. z = -5 + 4i
 - c. z = -6 3i
 - d. z = 2i
 - e. z = 5
- 2. Show a graphic representation of vector addition wherein you work with $z_1 = 3 + 5i$ and $z_2 = -4 2i$.
 - a. Then show the result of $z_1 + z_2$.
 - b. How about vector subtraction \rightarrow try $z_1 z_2$
 - c. Now try and then $z_2 z_1$
 - d. What about division and multiplication \rightarrow graph the result.