A. Lesson Context

BIG PICTURE of this UNIT:

- How can we analyze growth or decay patterns in data sets & contextual problems?
- How can we algebraically & graphically summarize growth or decay patterns?
- How can we compare & contrast linear and exponential models for growth and decay problems.
- How can we extend basic function concepts using exponential functions?

B. Lesson Objectives

i. Study the graphs of exponential functions

Use DESMOS to complete this investigation

PART 1 – Concept Investigations

DESMOS Investigation #1

- (a) Graph $y = 2^x$
- (b) Then graph $y = a \cdot 2^x$ and add slider
- (c) set the slider for a for 1 < a < 10
- (d) play the slider
- (e) Now set the slider for -10 < a < -1 & play the slider
- (f) record observations and describe the effect of "a" on the exponential function

Working with Function Notations and Function Concepts

- (g) graph $f(x) = 2^x$
- (h) graph $y = a \cdot f(x)$ and add slider
- (i) set the slider for 1 < a < 10
- (j) play the slider
- (k) CONCLUSION \rightarrow what does a in the equation y = af(x) do? Does it matter what f(x) is?

DESMOS Investigation #2

- (a) Graph $y = 2^x$
- (b) Then graph $y = 2^{bx}$ and add slider
- (c) set the slider for 1 < b < 10
- (d) play the slider
- (e) set the slider for -10 < b < -1 & play the slider
- (f) set the slider for $0 \le b \le 1$ & play the slider
- (g) record observations and describe the effect of "b" on the exponential function

Working with Function Notations and Function Concepts

- (h) graph $f(x) = 2^x$
- (i) graph y = f(bx) and add slider
- (j) set the slider for 0 < b < 10
- (k) play the slider
- (1) CONCLUSION \rightarrow what does b in the equation y = f(bx) do? Does it matter what f(x) is?

DESMOS Investigation #3

- (a) Graph $y = 2^x$
- (b) Then graph $y = 2^{x+c}$ and add slider
- (c) set the slider for a for 0 < c < 20
- (d) play the slider
- (e) Now set the slider for -20 < c < 0 & play the slider
- (f) record observations and describe the effect of "c" on the exponential function

Working with Function Notations and Function Concepts

- (g) graph $f(x) = 2^x$
- (h) graph y = f(x + c) and add slider
- (i) set the slider for 0 < c < 20
- (j) play the slider
- (k) CONCLUSION \rightarrow what does c in the equation y = f(x + c) do? Does it matter what f(x) is?

DESMOS Investigation #4

- (a) Graph $y = 2^x$
- (b) Then graph $y = 2^x + d$ and add slider
- (c) set the slider for 0 < d < 20
- (d) play the slider
- (e) Now set the slider for -20 < d < 0 & play the slider
- (f) record observations and describe the effect of "d" on the exponential function

Working with Function Notations and Function Concepts

- (g) graph $f(x) = 2^x$
- (h) graph y = f(x) + d and add slider
- (i) set the slider for 0 < d < 20
- (j) play the slider
- (k) CONCLUSION \rightarrow what does d in the equation y = f(x) + d do? Does it matter what f(x) is?

CONCLUSION \rightarrow If you are given an equation like $y = af(b(x+c)) + d \rightarrow$ what are the transformational effects of a, b, c, d