A. Lesson Context

	 How do we measure "change" in a function or function model? 		
BIG PICTURE of this UNIT:	 Why do we measure "change" in a function? 		
	 How do we analytically analyze a function or function model – beyond a simple 		
	preCalculus & visual/graphic level?		
	Where we've been	Where we are	Where we are heading
CONTEXT of this LESSON:			
	We understand how to	Can we now consolidate	Working with more
	differentiate and work with	our skills in differentiating	complicated functions that
	polynomial, sinusoidal,	and working with variety	are variations of
	exponential & log functions & we	of functions?	polynomials, sinusoidal and
	understanding new		exp/log
	differentiation techniques		

B. Review – Differentiation Techniques: Summary

Rule	"formula"
Chain Rule	
Product Rule	
Quotient Rule	
Derivative of trig fcns:	
Derivative of Exp & log fcns:	
Derivative of power fcns:	

C. Applying Calculus: Working with Rates of Change & Tangents & Normals

- 1. **(CI)** Given the function $f(x) = \ln(2x 1)$, determine:
 - i. The equation of the derivative.
 - ii. The exact value of the instantaneous rate of change at x = 2.
 - iii. At what point(s) does the function have an instantaneous rate of change of $\frac{1}{3}$?
- 2. **(CI)** Given the function $f(x) = (3x+1)\ln(x)$, determine:
 - i. The equation of the derivative
 - ii. The exact value of the instantaneous rate of change at x = e.
- 3. **(CI)** Determine the equation of the line tangent to $y = (6x + 3)^{\frac{5}{3}}$ at x = 4.
- 4. **(CI)** Find $\frac{dy}{dx}$ for $y = \frac{x^2 1}{2x^2 + 1}$. Determine the values of x for which $\frac{dy}{dx} > 0$.
- 5. **(CI)** Determine the interval(s) in which the curve of $g(x) = \sin^2(x)$ is concave down.
- 6. **(CI)** Find the equation of the line normal to the curve of $y = 4xe^{x^2-4}$ at the point (2,8)
- 7. (CI) Determine the equation of the line tangent to $y = x^3 \ln(x)$ at x = 1.
- 8. (CI) Determine the equation of the tangent to $y = \cos(\pi 2x)$ at the point where $x = \frac{\pi}{4}$.
- 9. (CI) Find the point(s) where the tangent line to the curve of $f(x) = e^{2x-3x^2}$ is horizontal.
- 10. (CI) Find the point(s) where the tangent line to the curve of $f(x) = \frac{x^2 2x + 4}{x^2 + 4}$ is horizontal.

11. (CI) Find the minimal value of
$$g(x) = \frac{e^x}{x}$$
; $x > 0$.

12. (CI) Determine the equation of the tangent to
$$y = (2x^3 - 4x + 2)(x^2 - 3x + 1)$$
 at the point (2,-10).

13. (CI) For the curve defined by
$$g(x) = (\sin(x) + \cos(x))^2$$
 on the domain of $[0,2\pi]$, determine:

- the x- and y-intercept(s);
- ii. Show that $g'(x) = 2\cos(2x)$
- iii. the first three stationary points;
- iv. the "nature" of these stationary points (max/min/neither);

v. hence, sketch the function
$$g(x) = (\sin(x) + \cos(x))^2$$
.

14. (CI) Given the function
$$y = \sqrt{6x - 5}$$
.

- i. State the domain for the function $y = \sqrt{6x 5}$.
- ii. Find $\frac{dy}{dx}$ for $y = \sqrt{6x 5}$.
- iii. HENCE, explain why $\frac{dy}{dx} > 0$ for all values of x of the domain.
- iv. What does this mean about the function?

15. (CI) For the curve defined by
$$g(x) = e^{-x}\cos(x)$$
 on the domain of $\left[0, \frac{5\pi}{2}\right]$, determine:

- the x- and y-intercept(s);
- ii. the first two stationary points;
- iii. the "nature" of these stationary points (max/min/neither);
- iv. hence, sketch the function $g(x) = e^{-x} \cos(x)$.

16. **(CI)** Given the function
$$g(x) = \cos(x) + \frac{1}{2}\cos(2x)$$
, $x \in [0,2\pi]$, sketch the graph, identifying all important features including maximum(s), minimum(s) and inflection points.

17. (CI) For the curve of $g(x) = e^x \sin(x)$,

i. Find the equations of
$$g'(x)$$
 and $g''(x)$.

- ii. Find the values of x for which g'(x) = 0 and g''(x) = 0.
- iii. Given your work in Qi. and Qii., determine the intervals of increase and decrease and classify the extrema.
- iv. Sketch the function, given your work in Qiii.

18. (CI) Given the function $g(x) = xe^x - e^x$,

i. Evaluate the exact values of: (a)
$$g(1)$$
 (b) $g(0)$

ii. Show that
$$\frac{d}{dx}g(x) = e^x + g(x)$$
.

iii. Determine the intervals of increase/decrease of
$$y = g(x)$$
.

iv. Show that
$$y = g(x)$$
 has an inflection point at $x = -1$

v. Determine the interval in which
$$y = g(x)$$
 is concave up.

vi. Determine the equation of the tangent to the curve at
$$x = 1$$
.

19. **(CI)** Given the function $y = \frac{x}{3 - 2x}$;

- i. Determine the equation of the aymptotes of this rational function.
- ii. Hence or otherwise, evaluate $\lim_{x \to -\infty} \frac{x}{3 2x}$
- iii. Determine the x- and y-intercepts.
- iv. Find the equation of the line that is normal to the curve $y = \frac{x}{3-2x}$ at the point where x = 1.