A. Lesson Context

BIG PICTURE of this UNIT:	 How do we measure "change" in a function or function model? Why do we measure "change" in a function? How do we analytically analyze a function or function model – beyond a simple preCalculus & visual/graphic level? 		
CONTEXT of this LESSON:	Where we've been	Where we are	Where we are heading
CONTEXT OF this ELSSON.	We understand how to differentiate and work	How do we differentiate and work with functions that arise	Working with more complicated functions that
	with polynomial, sinusoidal, exponential & log functions	from a composition of two other functions?	are variations of polynomials, sinusoidal and exp/log

B. Lesson Objectives

- 1. Find out how to take the derivative of a composed function.
- 2. Use this differentiation methods to apply calculus skills (tangents/normals & curve sketching) to simple problems in curve sketching

C. Concept Review - Composition of Functions

1. Here is a list of basic, simple functions

Recall that $(F \circ G)(x) = F(G(x))$.

Let

$$f(x) = x^2 + x + 1$$
 $g(x) = 2x^2 + 1$ $h(x) = \sqrt{x}$ $j(x) = x^{-\frac{1}{3}}$ $k(x) = \frac{1}{x+1}$ $m(x) = \sin(x)$ $p(x) = \tan(x)$ $r(x) = \cos(x)$ $q(x) = \sec(x)$

2. Determine the equation of the following composite functions:

$$(a) f \circ g(x) \qquad (b) g \circ f(x) \qquad (c) f \circ h(x)$$

$$(d) j \circ g(x) \qquad (e) h \circ k(x) \qquad (f) f \circ m(x)$$

$$(g) k \circ p(x) \qquad (h) m \circ r(x) \qquad (i) p \circ h(x)$$

$$(j) h \circ h(x) \qquad (k) j \circ p(x) \qquad (l) g \circ r(x)$$

D. Skill Development - Derivatives of a Composed Functions

Now, let's use desmos.com & wolframalpha.com to develop an understanding of the derivative of a composed function.

Examples to use ->

- 1. Use $y = \sin(x^3)$ which is a "new" function, made by composing $f(x) = \sin(x)$ with $g(x) = x^3$ (such that $y = f \circ g(x) = f(g(x))$
 - (a) So let's start with a prediction \rightarrow what do we predict the derivative of $y = \sin(x^3)$ to be? Use desmos to graph $y = \sin(x^3)$ and its derivative as well as your proposed derivative. Make observation.
 - (b) Now use wolframalpha and ask wolframalpha to give us the derivative of $y = \sin(x^3)$ \rightarrow now how do we understand HOW that derivative came about?
- 2. So, now make a prediction for the derivative of $y = e^{\sin(x)}$. Use wolframalpha to confirm your prediction.

E. Skill Development - Differentiation Techniques: Summary

Rule	"formula"
Chain Rule	
Product Rule	
Quotient Rule	

F. Skill Development – Simple Practice

Let's go back to our opening exercise on composition and now take derivatives:

Recall that $(F \circ G)(x) = F(G(x))$.

Let

$$f(x) = x^2 + x + 1$$
 $g(x) = 2x^2 + 1$ $h(x) = \sqrt{x}$ $j(x) = x^{-\frac{1}{3}}$ $k(x) = \frac{1}{x+1}$ $m(x) = \sin(x)$ $p(x) = \tan(x)$ $r(x) = \cos(x)$ $q(x) = \sec(x)$

1. Determine the derivative of the following composite functions:

$$(a) f \circ g(x) \qquad (b) g \circ f(x) \qquad (c) f \circ h(x)$$

$$(d) j \circ g(x) \qquad (e) h \circ k(x) \qquad (f) f \circ m(x)$$

$$(g) k \circ p(x) \qquad (h) m \circ r(x) \qquad (i) p \circ h(x)$$

$$(j) h \circ h(x) \qquad (k) j \circ p(x) \qquad (l) g \circ r(x)$$

G. Problem 2 – Applying Calculus: Working with Rates of Change & Tangents & Normals

- 1. **(CI)** Given the function $f(x) = \ln(2x 1)$, determine:
 - i. The equation of the derivative.
 - ii. The exact value of the instantaneous rate of change at x = 2.
 - iii. At what point(s) does the function have an instantaneous rate of change of $\frac{1}{2}$?
- 2. **(CI)** Determine the equation of the line tangent to $y = (6x + 3)^{\frac{5}{3}}$ at x = 4.
- 3. Find the equation of the line normal to the curve of $y = 4xe^{x^2-4}$ at the point (1,4)

- 4. **(CI)** Given the function $y = \sqrt{6x 5}$.
 - i. State the domain for the function $y = \sqrt{6x 5}$.
 - ii. Find $\frac{dy}{dx}$ for $y = \sqrt{6x 5}$.
 - iii. HENCE, explain why $\frac{dy}{dx} > 0$ for all values of x.
 - iv. What does this mean about the function?
- 5. (CI) Determine the equation of the tangent to $y = \cos(\pi 2x)$ at the point where $x = \frac{\pi}{4}$.
- 6. (CI) Find the point(s) where the tangent line to the curve of $f(x) = e^{2x-3x^2}$ is horizontal.
- 7. (CI) For the curve defined by $g(x) = (\sin(x) + \cos(x))^2$ on the domain of $[0,2\pi]$, determine:
 - the x- and y-intercept(s);
 - ii. Show that $g'(x) = 2\cos(2x)$
 - iii. the first three stationary points;
 - iv. the "nature" of these stationary points (max/min/neither);
 - v. hence, sketch the function $g(x) = (\sin(x) + \cos(x))^2$.
- 8. (CI) Determine the interval(s) in which the curve of $g(x) = \sin^2(x)$ is concave down.
- 9. **(CI)** Given the function $g(x) = \cos(x) + \frac{1}{2}\cos(2x)$, $x \in [0,2\pi]$, sketch the graph, identifying all important features including maximum(s), minimum(s) and inflection points.