	<u>_</u>
	-
Lesson 88 – Probability with	
Combinatorics	
HL2 Math - Santowski	
	-
	¬
Fundamental Counting	
Fundamental Counting	
Principle	
Fundamental Counting Principle can be used determine the number of possible outcomes	
when there are two or more characteristics.	
Fundamental Counting Principle states that	
if an event has m possible outcomes and another independent event has n possible	
outcomes, then there are $m \star n$ possible	
outcomes for the two events together.	-
>	
	_
Fundamental Caratina	
Fundamental Counting	
Principle	
Lets start with a simple example.	
A student is to roll a die and flip a coin.	
How many possible outcomes will there be?	
)	

Fundamental	Counting
Princip	le

Lets start with a simple example.

A student is to roll a die and flip a coin. How many possible outcomes will there be?

12 outcomes

•

Fundamental Counting Principle

For a college interview, Robert has to choose what to wear from the following: 4 slacks, 3 shirts, 2 shoes and 5 ties. How many possible outfits does he have to choose from?

>

Fundamental Counting Principle

For a college interview, Robert has to choose what to wear from the following: 4 slacks, 3 shirts, 2 shoes and 5 ties. How many possible outfits does he have to choose from?

4*3*2*5 = 120 outfits

ν	el	2	n	11	1	O.	tı	\cap	n	
	.			u				U	ru.	3

A Permutation is an arrangement of items in a particular order.

Notice, ORDER MATTERS!

To find the number of Permutations of n items, we can use the Fundamental Counting Principle or factorial notation.

 \triangleright

Permutations

The number of ways to arrange the letters ABC:

Number of choices for first blank? 3 __ _ _ Number of choices for second blank? 3 _ _ _ _ Number of choices for third blank? 3 _ 2 _ 1

3*2*1 = 6 3! = 3*2*1 = 6ABC ACB BAC BCA CAB CBA

Permutations

To find the number of Permutations of n items chosen r at a time, you can use the formula

 $_{5}p_{3}$

Permutations

To find the number of Permutations of n items chosen r at a time, you can use the formula

$$_{n}p_{r} = \frac{n!}{(n-r)!}$$
 where $0 \le r \le n$.

$$_{5}p_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 5*4*3 = 60$$

....

Permutations

Practice:

A combination lock will open when the right choice of three numbers (from 1 to 30, inclusive) is selected. How many different lock combinations are possible assuming no number is repeated?

...

Permutations

Practice:

A combination lock will open when the right choice of three numbers (from 1 to 30, inclusive) is selected. How many different lock combinations are possible assuming no number is repeated?

$$_{30}p_3 = \frac{30!}{(30-3)!} = \frac{30!}{27!} = 30*29*28 = 24360$$

Permutations

Practice:

From a club of 24 members, a President, Vice President, Secretary, Treasurer and Historian are to be elected. In how many ways can the offices be filled?

•

Permutations

Practice:

From a club of 24 members, a President, Vice President, Secretary, Treasurer and Historian are to be elected. In how many ways can the offices be filled?

$$_{24}p_{5} = \frac{24!}{(24-5)!} = \frac{24!}{19!}$$

24*23*22*21*20=5,100,480

Combinations

A Combination is an arrangement of items in which order does not matter.

ORDER DOES NOT MATTER!

Since the order does not matter in combinations, there are fewer combinations than permutations. The combinations are a "subset" of the permutations.

Combinations

To find the number of Combinations of n items chosen r at a time, you can use the formula

$$_{n}C_{r}=\frac{n!}{r!(n-r)!}$$
 where $0 \le r \le n$.

•

Combinations

To find the number of Combinations of n items chosen r at a time, you can use the formula

 $_{5}C_{3}$

Combinations

To find the number of Combinations of n items chosen r at a time, you can use the formula ...

the formula
$$n!$$

$${}_{n}C_{r} = \frac{n!}{r!(n-r)!} \text{ where } 0 \le r \le n.$$

$$_{5}C_{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} =$$

$$\frac{5*4*3*2*1}{3*2*1*2*1} = \frac{5*4}{2*1} = \frac{20}{2} = 10$$

Combinations

Practice:

To play a particular card game, each player is dealt five cards from a standard deck of 52 cards. How many different hands are possible?

Combinations

Practice: To play a particular card game, each player is dealt five cards from a standard deck of 52 cards. How many different hands are possible?

$$_{52}C_5 = \frac{52!}{5!(52-5)!} = \frac{52!}{5!47!} = \frac{52!}{5!47!}$$

$$\frac{52*51*50*49*48}{5*4*3*2*1} = 2,598,960$$

Combinations

Practice:

A student must answer 3 out of 5 essay questions on a test. In how many different ways can the student select the questions?

Combinations

Practice: A student must answer 3 out of 5 essay questions on a test. In how many different ways can the student select the questions?

$$_{5}C_{3} = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = \frac{5*4}{2*1} = 10$$

Combinations

Practice:

A basketball team consists of two centers, five forwards, and four guards. In how many ways can the coach select a starting line up of one center, two forwards, and two guards?

Combinations

Practice: A basketball team consists of two centers, five forwards, and four guards. In how many ways can the coach select a starting line up of one center, two forwards, and two guards?

Center: Forwards: Guards:
$${}_{2}C_{1} = \frac{2!}{1!1!} = 2 {}_{5}C_{2} = \frac{5!}{2!3!} = \frac{5*4}{2*1} = 10 {}_{4}C_{2} = \frac{4!}{2!2!} = \frac{4*3}{2*1} = 6$$

$${}_{2}C_{1} * {}_{5}C_{2} * {}_{4}C_{2}$$

Thus, the number of ways to select the starting line up is 2*10*6 = 120.

Guidelines on Which Method to Use

Permutations	Combinations			
Number of ways of select	Number of ways of selecting r items out of n items			
Repetitions as	Repetitions are not allowed			
Order is important.	Order is not important.			
Arrangements of n items taken r at a time	Subsets of n items taken r at a time			
$_{n}P_{r}=n!/(n-r)!$	$_{n}C_{r}=n!/[r!(n-r)!]$			
Clue words: arrangement,	Clue words: group,			
schedule, order	sample, selection			

Example #1

- Two cards are picked without replacement from a deck of 52 playing cards. Determine the probability that both are kings using:
- (a) the multiplication law
- ▶ (b) combinations

•

Solution #1 Two cards are picked without replacement from a dock of 52 playing cards. Determine the probability that both are kings using an ite multiplication to the kings using a first multiplication with the combinations, $f(t_1 \text{-sol}(k_1), f(k_2), f(k_3), f(k_4)) = \frac{1}{211}$ $= \frac{1}{(k_1)(k_2)} \sum_{i=1}^{k_4} \frac{1}{211}$

9

Fvoi	mn	1۵	#0
Exa	\mathbf{u}	IG.	# 2

- ▶ The word COUNTED has been spelled using Scrabble tiles. Two tiles are randomly chosen one at a time and placed in the order in which they were chosen. Determine the probability that the two tiles were:
- ▶ (a) CO
- ▶ (b) Both vowels

Again, use both the multiplication law and combinatorics to work out an answer.

Solution #2 The word COLNTED has been spelled using Scrabble tiles. Two tiles are randomly chosen one at a time and placed in the order as which they were chosen. Determine the probability example to the content of the probability of the content of the

Example #3

An athletic council decides to form a subcommittee of seven council members from the current council of 9 males and 6 females. What is the probability that the subcommittee will consist of exactly three females?

Solut	ion #3
	The Ablacis Council decides to form a sub-committee of seven council members to look at low funds raised should be good on sports activation at the school. There are a soul of 5 adhetic council members, while and 6 females. What is the probability that the sub-committee will consist of exactly 3 females? $f(y^2) \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \stackrel{\text{if } V_3}{\text{formace}} \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \stackrel{\text{if } V_3}{\text{formace}} \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \stackrel{\text{if } V_3}{\text{formace}} \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \stackrel{\text{if } V_3}{\text{formace}} \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \stackrel{\text{if } V_3}{\text{formace}} \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \stackrel{\text{if } V_3}{\text{formace}} \stackrel{\text{in supple home county} 3 broads}{\text{formace}} \text{in $

Example #4

- A bag of marbles contains 5 red, 3 green and 6 blue marbles. If a child takes 3 marbles from the bag, determine the probability that:
- (a) exactly 2 are blue
- ▶ (b) at least one is blue
- (c) the first is red, the second green and the third is blue
- ▶ (d) one is red, one is green and one is blue

▶

A big of murbles contains 5 red, 3 green, and 6 blue murbles. If a child grabs three marbles from the bag, determine the probability that: a) exactly 2 are blue: $(\frac{1}{3}(b) = \frac{1}{3}(2a \text{ and leive})$ $\frac{\frac{1}{3}(-\frac{1}{3})}{\frac{1}{3}(-\frac{1}{3})} = \frac{1}{\frac{1}{3}}$ $\frac{\frac{1}{3}(-\frac{1}{3})}{\frac{1}{3}(-\frac{1}{3})} = \frac{1}{\frac{1}{3}}$ $\frac{\frac{1}{3}(-\frac{1}{3})}{\frac{1}{3}(-\frac{1}{3})} = \frac{1}{3}(-\frac{1}{3})$ $\frac{\frac{1}{3}(-\frac{1}{3})}{\frac{1}{3}(-\frac{1}{3})} = \frac{1}{3}(-\frac{1}{3})$ one is red, one is green and fire third is blue: $\frac{1}{3}(-\frac{1}{3}(-\frac{1}{3})) = \frac{1}{3}(-\frac{1}{3}(-\frac{1}{3})) = \frac{1}{3}(-\frac{1}{3})$ or is red, one is pred and the limit is blue.

[Free som so]	_	# 5
Exampl	ı	# .

- In a card game you are dealt 5 cards from a pack of 42 cards. When you look at your five cards, what is the probability (expressed in combinatoric form), that you have:
- ▶ (a) four aces
- ▶ (b) four tens and an ace
- ▶ (c) 10,J,Q,K,A
- ▶ (d) at least one Jack

•

In a cast game you are dealt 5 cards from a pack of 52 shuffled cards. When you look at your 5 cards, what is the probability, expressed in combination notation, that you have: (a) four acts? $\{14, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ (b) four tens and an act? $\{\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\}$ (c) 10.1, 0, K and acc? d) at least one Jack? (c) $\frac{1}{52}$ (d) at least one Jack? (e) $\frac{1}{52}$ (f) $\frac{1}{52}$ (g) $\frac{1}{52}$ (g) $\frac{1}{52}$ (h) $\frac{1}{52}$ (h) $\frac{1}{52}$ (h) $\frac{1}{52}$ (h) $\frac{1}{52}$ (h) $\frac{1}{52}$ (h) $\frac{1}{52}$

Example 6

- In a class of thirty students, calculate the probability that:
- (a) they all have different birthdays
- (b) at least two of them have the same birthday

~ .		111
50	lution	#6
L)U	шин	π

In a class of 30 students, calculate the probability (to the nearest hundredth) that a) they all have different birthads; ossume no one is born on February 29) $\frac{\rho}{365} = \frac{1}{365} =$

b) at least 2 of them have the same outriciay.

•

Example #7

- City council consists of 9 men and 6 women. Three representatives are chosen at random to form an environmental sub-committee.
- (a) What is the probability that Mayor Jim and two women are chosen?
- (b) what is the probability that two women are chosen if Mayor Jim must be on the committee?

▶

Solution 7

City Council consists of nine men and six women. Three representatives are chosen at random to form a environmental sub-committee.

a) What is the probability that Mayor I'm Millonovich and two women are chosen? $P\left(\theta_{obj} \text{ if } \gamma_{obj} = \frac{1}{16} \frac{1}{16} \frac{1}{2} \frac{1}{2}$

>

Example	
1) Beth and Shayna each purchase one raffle	
ticket. If a total of eleven raffle tickets are sold and two winners will be selected, what	
is the probability that both Beth and Shayna	
win?	-
>	
	7
Example	
Ехапіріс	
2) A meeting takes place between a diplomat	
and fourteen government officials. However, four of the officials are actually	
spies. If the diplomat gives secret	
information to ten of the attendees at	
random, what is the probability that no secret information was given to the spies?	
secret information was given to the spies:	
<u> </u>	
	¬
Example	-
3) A fair coin is flipped ten times. What is the	
probability of the coin landing heads up	
exactly six times?	
•	

Example	
4) A six-sided die is rolled six times. What is	
the probability that the die will show an even number exactly two times?	
even number exactly two times?	
	_
Example	
5) A test consists of nine true/false questions.	
A student who forgot to study guesses	
randomly on every question. What is the probability that the student answers at least	
two questions correctly?	
1 1	
	-
>	
	٦
Example	
0.41-1-1-1-11	
6) A basketball player has a 50% chance of	
making each free throw. What is the probability that the player makes at least	
eleven out of twelve free throws?	
cieven out of twelve nee unows:	-
)	