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VECTORS AND THE GEOMETRY OF 

SPACE – Dot (Scalar) Product)

IBHL Lesson 80

VECTORS

So far, we have added 

two vectors and multiplied 

a vector by a scalar.

VECTORS

The question arises:

 Is it possible to multiply two vectors 

so that their product is a useful quantity?
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One such product is the dot 

product, which we will discuss 

in this section.

VECTORS

Another is the cross product, 

which we will discuss in Lesson 81

VECTORS

Lesson 80

The Dot Product

In this section, we will learn about:

Various concepts related to the dot product 

and its applications.

VECTORS
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If a = ‹a1, a2, a3› and b = ‹b1, b2, b3›, then 

the dot product of a and b is the number a • b 

given by: 

a • b = a1b1 + a2b2 + a3b3

THE DOT PRODUCT Definition 1

Thus, to find the dot product of a and b, 

we multiply corresponding components 

and add.

DOT PRODUCT

The result is not a vector.

It is a real number, that is, a scalar. 

 For this reason, the dot product is sometimes 

called the scalar product (or inner product).

SCALAR PRODUCT
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Though Definition 1 is given for three-

dimensional (3-D) vectors, the dot product 

of two-dimensional vectors is defined in 

a similar fashion:

‹a1, a2› ∙ ‹b1, b2› = a1b1 + a2b2

DOT PRODUCT

‹2, 4› ∙ ‹3, – 1› =

‹–1, 7, 4› ∙ ‹6, 2, –½› =

(i + 2j – 3k) ∙ (2j – k) =

DOT PRODUCT Example 1

‹2, 4› ∙ ‹3, – 1› = 2(3) + 4(–1) = 2

‹–1, 7, 4› ∙ ‹6, 2, –½› = (–1)(6) + 7(2) + 4(–½) 

= 6

(i + 2j – 3k) ∙ (2j – k) = 1(0) + 2(2) + (–3)(–1) 

=  7

DOT PRODUCT Example 1
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The dot product obeys many of the laws 

that hold for ordinary products of real 

numbers.

 These are stated in the following theorem.

DOT PRODUCT

If a, b, and c are vectors in R3 and c is 

a scalar, then

PROPERTIES OF DOT PRODUCT
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Theorem 2

These properties are easily proved 

using Definition 1. 

 For instance, the proofs of Properties 1 and 3 

are as follows.

DOT PRODUCT PROPERTIES
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a ∙ a 

= a1
2 + a2

2 + a3
2

= |a|2

DOT PRODUCT PROPERTY 1 Proof

a • (b + c) 

= ‹a1, a2, a3› ∙ ‹b1 + c1, b2 + c2, b3 + c3›

= a1(b1 + c1) + a2(b2 + c2) + a3(b3 + c3)

= a1b1 + a1c1 + a2b2 + a2c2 + a3b3 + a3c3

= (a1b1 + a2b2 + a3b3) + (a1c1 + a2c2 + a3c3)

= a ∙ b + a ∙ c

DOT PRODUCT PROPERTY 3 Proof

The dot product a • b can be given 

a geometric interpretation in terms of 

the angle θ between a and b.

 This is defined to be the angle between 

the representations of a and b that start 

at the origin, where 0 ≤ θ ≤ π.

GEOMETRIC INTERPRETATION
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In other words, θ is the angle between 

the line segments and here.

 Note that if a and b

are parallel vectors, 

then θ = 0 or θ = π.

GEOMETRIC INTERPRETATION

OA OB

The formula in the following theorem 

is used by physicists as the definition 

of the dot product. 

DOT PRODUCT

If θ is the angle between the vectors 

a and b, then 

a ∙ b = |a||b| cos θ

DOT PRODUCT—DEFINITION Theorem 3
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If we apply the Law of Cosines to triangle OAB

here, we get: 

|AB|2 = |OA|2 + |OB|2 – 2|OA||OB| cos θ

 Observe that 

the Law of Cosines 

still applies in 

the limiting cases 

when θ = 0 or π, or 

a = 0 or b = 0

DOT PRODUCT—DEFINITION Proof—Equation 4

However, 

|OA| = |a|

|OB| = |b| 

|AB| = |a – b|

DOT PRODUCT—DEFINITION Proof

So, Equation 4 becomes:

|a – b|2 = |a|2 + |b|2 – 2|a||b| cos θ

DOT PRODUCT—DEFINITION Proof—Equation 5
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Using Properties 1, 2, and 3 of the dot 

product, we can rewrite the left side of 

the equation as follows:  

|a – b|2 = (a – b) ∙ (a – b)

= a ∙ a – a ∙ b – b ∙ a + b ∙ b

= |a|2 – 2a ∙ b + |b|2

DOT PRODUCT—DEFINITION Proof

Therefore, Equation 5 gives: 

|a|2 – 2a ∙ b + |b|2 = |a|2 + |b|2 – 2|a||b| cos θ

 Thus, 

–2a ∙ b = –2|a||b| cos θ

or 

a ∙ b = |a||b| cos θ

DOT PRODUCT—DEFINITION Proof

If the vectors a and b have lengths 4 

and 6, and the angle between them is π/3, 

find a ∙ b.

DOT PRODUCT Example 2
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If the vectors a and b have lengths 4 

and 6, and the angle between them is π/3, 

find a ∙ b.

 Using Theorem 3, we have: 

a ∙ b = |a||b| cos(π/3) 

= 4 ∙ 6 ∙ ½

= 12

DOT PRODUCT Example 2

The formula in Theorem 3 

also enables us to find the angle 

between two vectors. 

DOT PRODUCT

If θ is the angle between the nonzero 

vectors a and b, then

cos
| || |





a b

a b

NONZERO VECTORS Corollary 6
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Find the angle between the vectors 

a = ‹2, 2, –1› and b = ‹5, –3, 2›

NONZERO VECTORS Example 3

Also, 

a ∙ b = 2(5) + 2(–3) +(–1)(2) = 2

NONZERO VECTORS Example 3

2 2 2

2 2 2

| | 2 2 ( 1) 3

and

| | 5 ( 3) 2 38

    

    

a

b

Thus, from Corollary 6, we have:

 So, the angle between a and b is:

NONZERO VECTORS

2
cos

| || | 3 38



 

a b

a b

Example 3

1 2
cos 1.46 (or 84 )

3 38
   
  

 
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Two nonzero vectors a and b are called 

perpendicular or orthogonal if the angle 

between them is θ = π/2.

ORTHOGONAL VECTORS

Then, Theorem 3 gives: 

a ∙ b = |a||b| cos(π/2) = 0

 Conversely, if a ∙ b = 0, then cos θ = 0; 

so, θ = π/2.

ORTHOGONAL VECTORS

The zero vector 0 is considered to be 

perpendicular to all vectors. 

 Therefore, we have the following method for 

determining whether two vectors are orthogonal. 

ZERO VECTORS
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Two vectors a and b are orthogonal 

if and only if  a ∙ b = 0

ORTHOGONAL VECTORS Theorem 7

Show that 2i + 2j – k is perpendicular 

to 5i – 4j + 2k.

ORTHOGONAL VECTORS Example 4

Show that 2i + 2j – k is perpendicular 

to 5i – 4j + 2k.

 (2i + 2j – k) ∙ (5i – 4j + 2k) 

= 2(5) + 2(–4) + (–1)(2) 

= 0

 So, these vectors are perpendicular 

by Theorem 7.

ORTHOGONAL VECTORS Example 4
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As cos θ > 0 if 0 ≤ θ < π/2 and cos θ < 0

if π/2 < θ ≤  π, we see that a ∙ b is positive 

for θ < π/2 and negative for θ > π/2.

 We can think of a ∙ b as measuring the extent 

to which a and b point in the same direction.

DOT PRODUCT

The dot product a ∙ b is:

 Positive, if a and b point in the same general direction

 Zero, if they are 

perpendicular

 Negative, if they point 

in generally opposite 

directions

DOT PRODUCT

In the extreme case where a and b 

point in exactly the same direction, 

we have θ = 0.

 So, cos θ = 1 and  a ∙ b = |a||b|

DOT PRODUCT
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If a and b point in exactly opposite 

directions, then θ = π.

 So, cos θ = –1 and  a ∙ b = –|a| |b|

DOT PRODUCT

One use of projections occurs 

in physics in calculating work.

APPLICATIONS OF PROJECTIONS

We defined the work done 

by a constant force F in moving an object 

through a distance d as: 

W = Fd

 This, however, applies only when the force is 

directed along the line of motion of the object.  

CALCULATING WORK
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However, suppose that the constant force 

is a vector pointing in some other 

direction, as shown.

CALCULATING WORK

PRF

If the force moves the object from 

P to Q, then the displacement vector

is .

CALCULATING WORK

PQD

The work done by this force is defined to be 

the product of the component of the force 

along D and the distance moved: 

W = (|F| cos θ)|D|

CALCULATING WORK
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However, from Theorem 3, 

we have: 

W = |F||D| cos θ

= F ∙ D

CALCULATING WORK Equation 12

Therefore, the work done by a constant 

force F is:

 The dot product F ∙ D, where D is 

the displacement vector.

CALCULATING WORK

A wagon is pulled a distance of 100 m along 

a horizontal path by a constant force of 70 N.

The handle of the wagon is held at an angle 

of 35° above the horizontal.

 Find the work 

done by the force.

CALCULATING WORK Example 7



2018-01-18

18

Suppose F and D are the force and 

displacement vectors, as shown.

CALCULATING WORK Example 7

Then, the work done is:

W = F ∙ D = |F||D| cos 35°

= (70)(100) cos 35°

≈ 5734 N∙m

= 5734 J

CALCULATING WORK Example 7

A force is given by a vector F = 3i + 4j + 5k 

and moves a particle from the point P(2, 1, 0) 

to the point Q(4, 6, 2).

 Find the work done. 

CALCULATING WORK Example 8
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The displacement vector is

So, by Equation 12, the work done is: 

W = F ∙ D 

= ‹3, 4, 5› ∙ ‹2, 5, 2›

= 6 + 20 + 10 = 36

 If the unit of length is meters and the magnitude 

of the force is measured in newtons, then the work 

done is 36 joules.

CALCULATING WORK

2,5, 2PQ D

Example 8

The direction angles of a nonzero vector a

are the angles α, β, and γ (in the interval 

[0, π]) that a makes with the positive x-, y-, 

and z-axes.

DIRECTION ANGLES

The cosines of these direction angles—cos α, 

cos β, and cos γ—are called the direction 

cosines of the vector a.

DIRECTION COSINES
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Using Corollary 6 with b replaced by i, 

we obtain:

DIRECTION ANGLES & COSINES Equation 8

1cos
| || | | |

a



 

a i

a i a

This can also be seen directly from 

the figure.

DIRECTION ANGLES & COSINES

Similarly, we also have:

DIRECTION ANGLES & COSINES

32cos cos
| | | |

aa
  

a a

Equation 9
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By squaring the expressions 

in Equations 8 and 9 and adding, 

we see that: 

DIRECTION ANGLES & COSINES Equation 10

2 2 2cos cos cos 1    

We can also use Equations 8 and 9 

to write:

a = ‹a1, a2, a3›

= ‹|a| cos α, |a| cos β, |a| cos γ›

= |a|‹cos α, cos β, cos γ›

DIRECTION ANGLES & COSINES

Therefore,

 This states that the direction cosines of a

are the components of the unit vector in 

the direction of a. 

DIRECTION ANGLES & COSINES

1
cos ,cos ,cos

| |
  a

a

Equation 11
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Find the direction angles of the vector 

a = ‹1, 2, 3›



 So, Equations 8 and 9 give:

DIRECTION ANGLES & COSINES Example 5

2 2 2| | 1 2 3 14   a

1 2 3
cos cos cos

14 14 14
   

 Therefore,

DIRECTION ANGLES & COSINES

1

1

1

1
cos 74

14

2
cos 58

14

3
cos 37

14













 
   

 

 
   

 

 
   

 

Example 5

The figure shows representations and

of two vectors a and b with the same initial 

point P.

PROJECTIONS

PQ PR
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Let S be the foot of the perpendicular 

from R to the line containing        .

PROJECTIONS

PQ

Then, the vector with representation       is 

called the vector projection of b onto a and is

denoted by proja b.

 You can think of it as a shadow of b.  

VECTOR PROJECTION

PS

The scalar projection of b onto a

(also called the component of b along a) 

is defined to be the signed magnitude 

of the vector projection.

SCALAR PROJECTION
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This is the number |b| cos θ, where θ

is the angle between a and b.

 This is denoted 

by compa b.

 Observe that 

it is negative 

if π/2 < θ ≤ π.

PROJECTIONS

The equation

a ∙ b = |a||b| cos θ = |a|(|b| cos θ)

shows that:

 The dot product of a and b can be interpreted 

as the length of a times the scalar projection of b

onto a.  

PROJECTIONS

Since

the component of b along a can be 

computed by taking the dot product of b

with the unit vector in the direction of a.

PROJECTIONS

| | cos
| | | |




  
a b a

b b
a a
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We summarize these ideas 

as follows.

PROJECTIONS

Scalar projection of b onto a:

Vector projection of b onto a:

 Notice that the vector projection 

is the scalar projection times 

the unit vector in the direction of a.

PROJECTIONS

acomp
| |




a b
b

a

a 2
proj

| | | | | |

  
  
 

a b a a b
b a

a a a

Find the scalar and vector projections of: 

b = ‹1, 1, 2› onto a = ‹–2 , 3, 1›

PROJECTIONS Example 6
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Since  

the scalar projection of b onto a is:

PROJECTIONS Example 6

2 2 2| | ( 2) 3 1 14    a

a

( 2)(1) 3(1) 1(2)
comp

| | 14

3

14

   
 



a b
b

a

The vector projection is that scalar projection 

times the unit vector in the direction of a:

PROJECTIONS

a

3 3
proj

| | 1414

3 9 3
, ,

7 14 14

 

 

a
b a

a

Example 6


