

So far, we have added two vectors and multiplied a vector by a scalar.

VECTORS
The question arises:
 Is it possible to multiply two vectors
so that their product is a useful quantity?

One such product is the dot
product, which we will discuss
in this section.

Another is the cross product, which we will discuss in Lesson 81

Lesson 80 The Dot Product In this section, we will learn about: Various concepts related to the dot product and its applications.

	THE DOT PRODUCT Definition 1	I
	If a = $\langle a_1, a_2, a_3 \rangle$ and b = $\langle b_1, b_2, b_3 \rangle$,	then
	the dot product of a and b is the numb	
		el a·b
1	given by:	
	$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2 + a_3 b_3$	
		me /
1		
		/ V
	DOT PRODUCT	
	Thus, to find the dot product of a	and b
	we multiply corresponding compo	nents
	and add.	

SCALAR PRODUCT

The result is not a vector.

It is a real number, that is, a scalar.

• For this reason, the dot product is sometimes called the scalar product (or inner product).

DOT PRODUCT

Though Definition 1 is given for threedimensional (3-D) vectors, the dot product of two-dimensional vectors is defined in a similar fashion:

$$\langle a_1, a_2 \rangle \cdot \langle b_1, b_2 \rangle = a_1 b_1 + a_2 b_2$$

DOT PRODUCT

Example 1

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle =$$

$$\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle =$$

$$(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) =$$

DOT PRODUCT

Example 1

$$\langle 2, 4 \rangle \cdot \langle 3, -1 \rangle = 2(3) + 4(-1) = 2$$

$$\langle -1, 7, 4 \rangle \cdot \langle 6, 2, -\frac{1}{2} \rangle = (-1)(6) + 7(2) + 4(-\frac{1}{2})$$

$$(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \cdot (2\mathbf{j} - \mathbf{k}) = 1(0) + 2(2) + (-3)(-1)$$

= 7

DOT PRODUCT

The dot product obeys many of the laws that hold for ordinary products of real numbers.

These are stated in the following theorem.

PROPERTIES OF DOT PRODUCT Theorem 2

If **a**, **b**, and **c** are vectors in \mathbb{R}^3 and **c** is a scalar, then

1.
$$\mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2$$

2.
$$\mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$$

3.
$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$$

4.
$$(c\mathbf{a}) \cdot \mathbf{b} = c(\mathbf{a} \cdot \mathbf{b}) = \mathbf{a} \cdot (c\mathbf{b})$$

$$5. \ 0 \cdot \mathbf{a} = 0$$

DOT PRODUCT PROPERTIES

These properties are easily proved using Definition 1.

• For instance, the proofs of Properties 1 and 3 are as follows.

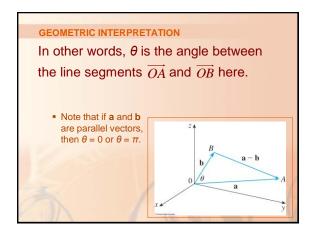
DOT PRODUCT PROP	PERTY 1 Proof
$= a_1^2 + a_2^2$	+ a ₃ ²
$= a ^2$	

DOT PRODUCT PROPERTY 3 Proof
$a \cdot (b + c)$
$= \langle a_1, a_2, a_3 \rangle \cdot \langle b_1 + c_1, b_2 + c_2, b_3 + c_3 \rangle$
$= a_1(b_1 + c_1) + a_2(b_2 + c_2) + a_3(b_3 + c_3)$
$= a_1b_1 + a_1c_1 + a_2b_2 + a_2c_2 + a_3b_3 + a_3c_3$
$= (a_1b_1 + a_2b_2 + a_3b_3) + (a_1c_1 + a_2c_2 + a_3c_3)$
= a · b + a · c

GEOMETRIC INTERPRETATION

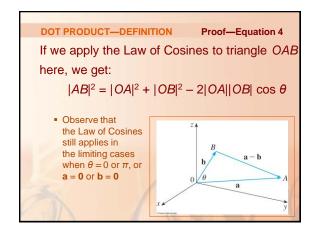
The dot product $\mathbf{a} \cdot \mathbf{b}$ can be given a geometric interpretation in terms of the angle θ between \mathbf{a} and \mathbf{b} .

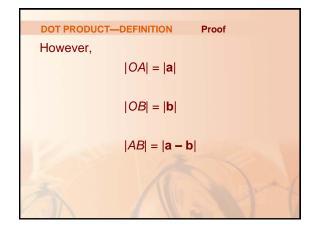
• This is defined to be the angle between the representations of **a** and **b** that start at the origin, where $0 \le \theta \le \pi$.



The formula	a in the following theorem
is used by p	physicists as the definition
of the dot p	roduct.

DOT PRODUCT—DEFINITION Theorem 3
If θ is the angle between the vectors
a and b, then
$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos\theta$





DOT PRODUCT—DEFINITION	Proof—Equation 5
So, Equation 4 becomes	S:
$ \mathbf{a} - \mathbf{b} ^2 = \mathbf{a} ^2 + \mathbf{b} ^2 - \mathbf{a} ^2 + \mathbf{a} ^2 + \mathbf{b} ^2 - \mathbf{a} ^2 + \mathbf{b} ^2 - \mathbf{a} ^2 + \mathbf{a} ^2 + \mathbf{b} ^2 - \mathbf{a} ^2 + \mathbf{a} ^2 + \mathbf{b} ^2 - \mathbf{a} ^2 + \mathbf$	- 2 a b cos θ
* 16	
	2000

DOT PRODUCT—DEFINITION

Proof

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of the equation as follows:

$$|\mathbf{a} - \mathbf{b}|^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})$$
$$= \mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} - \mathbf{b} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b}$$
$$= |\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2$$

DOT PRODUCT—DEFINITION

Proof

Therefore, Equation 5 gives:

$$|\mathbf{a}|^2 - 2\mathbf{a} \cdot \mathbf{b} + |\mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 - 2|\mathbf{a}||\mathbf{b}|\cos\theta$$

■ Thus,

$$-2\mathbf{a} \cdot \mathbf{b} = -2|\mathbf{a}||\mathbf{b}|\cos\theta$$

or

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}| \cos \theta$$

DOT PRODUCT

Example 2

If the vectors \mathbf{a} and \mathbf{b} have lengths 4 and 6, and the angle between them is $\pi/3$, find $\mathbf{a} \cdot \mathbf{b}$.

DOT PRODUCT	Example 2
If the vectors a and	b have lengths 4
and 6, and the angl	e between them is $\pi/3$,
find a · b .	
Using Theorem 3, w	e have:
	$ \mathbf{a} \mathbf{b} \cos(\pi/3)$
	4·6·½ 12
- /	

The formul	τ la in Theorem 3
	es us to find the angle
between tv	vo vectors.

NONZERO VECTORS	Corollary 6
If θ is the angle betweetors a and b , the	
$\cos \theta$ =	$= \frac{\mathbf{a} \cdot \mathbf{b}}{ \mathbf{a} \mathbf{b} }$
* /	

NONZERO VECTORS

Example 3

Find the angle between the vectors

$$a = \langle 2, 2, -1 \rangle$$
 and $b = \langle 5, -3, 2 \rangle$

NONZERO VECTORS

Example 3

$$|\mathbf{a}| = \sqrt{2^2 + 2^2 + (-1)^2} = 3$$

and

$$|\mathbf{b}| = \sqrt{5^2 + (-3)^2 + 2^2} = \sqrt{8}$$

Also,

$$\mathbf{a} \cdot \mathbf{b} = 2(5) + 2(-3) + (-1)(2) = 2$$

NONZERO VECTORS

Example 3

Thus, from Corollary 6, we have:

$$\cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|} = \frac{2}{3\sqrt{38}}$$

■ So, the angle between **a** and **b** is:

$$\theta = \cos^{-1} \left(\frac{2}{3\sqrt{38}} \right) \approx 1.46 \text{ (or 84)}^{\circ}$$

ORTHOGONAL VECTORS
Two nonzero vectors a and b are called
perpendicular or orthogonal if the angle
between them is $\theta = \pi/2$.

ORTHOGONAL VECTORS

Then, Theorem 3 gives:

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}| \cos(\pi/2) = 0$$

• Conversely, if $\mathbf{a} \cdot \mathbf{b} = 0$, then $\cos \theta = 0$; so, $\theta = \pi/2$.

ZERO VECTORS

The zero vector **0** is considered to be perpendicular to all vectors.

 Therefore, we have the following method for determining whether two vectors are orthogonal.

ORTHOGONAL VECTORS Theorem 7
Two vectors a and b are orthogonal if and only if a · b = 0

ORTHOGONAL VECTORS

Show that $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is perpendicular to $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

ORTHOGONAL VECTORS Example 4
Show that $2\mathbf{i} + 2\mathbf{j} - \mathbf{k}$ is perpendicular to $5\mathbf{i} - 4\mathbf{j} + 2\mathbf{k}$.

- $(2\mathbf{i} + 2\mathbf{j} \mathbf{k}) \cdot (5\mathbf{i} 4\mathbf{j} + 2\mathbf{k})$ = 2(5) + 2(-4) + (-1)(2)= 0
- So, these vectors are perpendicular by Theorem 7.

DOT PRODUCT

As $\cos \theta > 0$ if $0 \le \theta < \pi/2$ and $\cos \theta < 0$ if $\pi/2 < \theta \le \pi$, we see that $\mathbf{a} \cdot \mathbf{b}$ is positive for $\theta < \pi/2$ and negative for $\theta > \pi/2$.

We can think of a · b as measuring the extent to which a and b point in the same direction.

The dot product $\mathbf{a} \cdot \mathbf{b}$ is: Positive, if \mathbf{a} and \mathbf{b} point in the same general direction Zero, if they are perpendicular Negative, if they point in generally opposite directions $\mathbf{a} \cdot \mathbf{b} > 0$ $\mathbf{a} \cdot \mathbf{b} = 0$

DOT PRODUCT

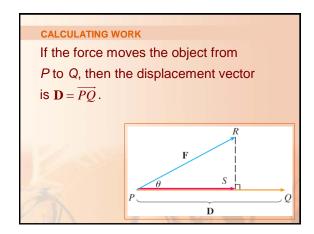
In the extreme case where **a** and **b** point in exactly the same direction, we have $\theta = 0$.

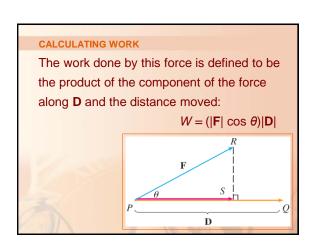
• So, $\cos \theta = 1$ and $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}||\mathbf{b}|$

DOT PRODUCT	
If a and b point in exactly opposite	
directions, then $\theta = \pi$.	
• So, $\cos \theta = -1$ and $\mathbf{a} \cdot \mathbf{b} = - \mathbf{a} \mathbf{b} $	
APPLICATIONS OF PROJECTIONS	
APPLICATIONS OF PROJECTIONS One use of projections occurs	
One use of projections occurs	

CALCULATING WORK We defined the work done by a constant force *F* in moving an object through a distance *d* as: W = FdThis, however, applies only when the force is directed along the line of motion of the object.

CALCULATING WORK However, suppose that the constant force is a vector $\mathbf{F} = \overrightarrow{PR}$ pointing in some other direction, as shown.

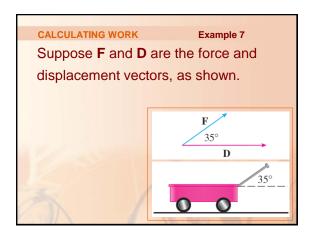


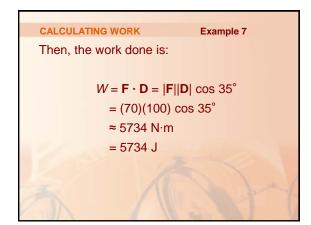


CALCULATING W	ORK Equation 12
However, fro	m Theorem 3,
we have:	
	$W = \mathbf{F} \mathbf{D} \cos\theta$
	= F · D
1000	

CALCULATING WORK
Therefore, the work done by a constant
force F is:
■ The dot product F · D , where D is the displacement vector.

CALCULATING WORK Example 7
A wagon is pulled a distance of 100 m along
a horizontal path by a constant force of 70 N.
The handle of the wagon is held at an angle
of 35° above the horizontal.
■ Find the work
done by the force.
00





CALCULATING WORK Example 8
A force is given by a vector $\mathbf{F} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$
and moves a particle from the point P(2, 1, 0)
to the point Q(4, 6, 2).
Find the work done.

CALCULATING WORK

Example 8

The displacement vector is $\mathbf{D} = \overrightarrow{PQ} = \langle 2, 5, 2 \rangle$

So, by Equation 12, the work done is:

$$W = \mathbf{F} \cdot \mathbf{D}$$

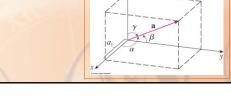
$$= \langle 3, 4, 5 \rangle \cdot \langle 2, 5, 2 \rangle$$

$$= 6 + 20 + 10 = 36$$

If the unit of length is meters and the magnitude of the force is measured in newtons, then the work done is 36 joules.

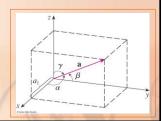
DIRECTION ANGLES

The direction angles of a nonzero vector \mathbf{a} are the angles α , β , and γ (in the interval $[0, \pi]$) that \mathbf{a} makes with the positive x-, y-, and z-axes.



DIRECTION COSINES

The cosines of these direction angles— $\cos \alpha$, $\cos \beta$, and $\cos \gamma$ —are called the direction cosines of the vector **a**.



DIRECTION ANGLES & COSINES Equation 8
Using Corollary 6 with b replaced by i ,
we obtain:
$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{ \mathbf{a} \mathbf{i} } = \frac{a_1}{ \mathbf{a} }$

DIRECTION ANGLES & This can also be	cosines e seen directly from
the figure.	
	ZĄ.
	γ a
	a y

DIRECTION ANGLES & COSINES Equation 9	
Similarly, we also have:	
$\cos \beta = \frac{a_2}{ \mathbf{a} } \qquad \cos \gamma = \frac{a_3}{ \mathbf{a} }$	

DIRECTION ANGLES & COSINES Equation 10

By squaring the expressions in Equations 8 and 9 and adding, we see that:

$$\cos^2\alpha + \cos^2\beta + \cos^2\gamma = 1$$

DIRECTION ANGLES & COSINES

We can also use Equations 8 and 9 to write:

$$\mathbf{a} = \langle a_1, a_2, a_3 \rangle$$

$$= \langle |\mathbf{a}| \cos \alpha, |\mathbf{a}| \cos \beta, |\mathbf{a}| \cos \gamma \rangle$$

$$= |\mathbf{a}| \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

DIRECTION ANGLES & COSINES Equation 11 Therefore,

$$\frac{1}{|\mathbf{a}|}\mathbf{a} = \langle \cos \alpha, \cos \beta, \cos \gamma \rangle$$

 This states that the direction cosines of a are the components of the unit vector in the direction of a.

DIRECTION ANGLES & COSINES Example 5 Find the direction angles of the vector

$$a = \langle 1, 2, 3 \rangle$$

- $|\mathbf{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$ So, Equations 8 and 9 give:

$$\cos \alpha \frac{1}{\sqrt{14}} \qquad \cos \beta \frac{2}{\sqrt{14}} \qquad \cos \gamma = \frac{3}{\sqrt{14}}$$

DIRECTIO	N ANGLES	& COSINES	Example 5
DIILCTIO	IN AINOLLS	& COOMILO	LAGITIPIE 3

Therefore,

$$\alpha = \cos^{-1}\left(\frac{1}{\sqrt{14}}\right) \approx 74^{\circ}$$

$$\beta = \cos^{-1}\left(\frac{2}{\sqrt{14}}\right) \approx 58^{\circ}$$

$$\gamma = \cos^{-1}\left(\frac{3}{\sqrt{14}}\right) \approx 37^{\circ}$$

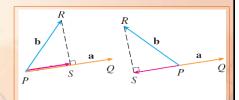
PROJECTIONS

The figure shows representations \overrightarrow{PQ} and \overrightarrow{PR} of two vectors a and b with the same initial point P.



P	RO	JE	СТ	10	N

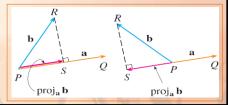
Let S be the foot of the perpendicular from R to the line containing \overrightarrow{PQ} .



VECTOR PROJECTION

Then, the vector with representation \overrightarrow{PS} is called the vector projection of **b** onto **a** and is denoted by $\operatorname{proj_a} \mathbf{b}$.

You can think of it as a shadow of b.



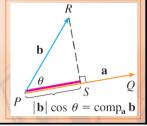
SCALAR PROJECTION

The scalar projection of **b** onto **a** (also called the component of **b** along **a**) is defined to be the signed magnitude of the vector projection.

PROJECTIONS

This is the number $|\mathbf{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .

- This is denoted by comp_a b.
- Observe that it is negative if π/2 < θ ≤ π.



PROJECTIONS

The equation

 $\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta = |\mathbf{a}| (|\mathbf{b}| \cos \theta)$

shows that:

 The dot product of a and b can be interpreted as the length of a times the scalar projection of b onto a.

PROJECTIONS

Since

$$|\mathbf{b}|\cos\theta = \frac{\mathbf{a}\cdot\mathbf{b}}{|\mathbf{a}|} = \frac{\mathbf{a}}{|\mathbf{a}|}\cdot\mathbf{b}$$

the component of **b** along **a** can be computed by taking the dot product of **b** with the unit vector in the direction of **a**.

We summarize these ideas
as follows.

PR	\sim 1	п	\sim T		uе
ГΝ	UJ	в	G I	IO.	NO.

Scalar projection of **b** onto **a**:

$$comp_a \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}$$

Vector projection of **b** onto **a**:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}\right) \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2} \mathbf{a}$$

 Notice that the vector projection is the scalar projection times the unit vector in the direction of a.

PROJECTIONS	Example 6
Find the scalar a	nd vector projections of:
b = <1, 1, 2>	onto a = $\langle -2, 3, 1 \rangle$
	, , ,
1/200	
* /	

	_	_			
	$^{\circ}$	ш	CT	n	uе
FN		_	О П	וטו	٧J

Example 6

Since

$$|\mathbf{a}| = \sqrt{(-2)^2 + 3^2 + 1^2} = \sqrt{14}$$

the scalar projection of **b** onto **a** is:

$$\operatorname{comp}_{a} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} = \frac{(-2)(1) + 3(1) + 1(2)}{\sqrt{14}}$$
$$= \frac{3}{\sqrt{14}}$$

PROJECTIONS

Example 6

The vector projection is that scalar projection times the unit vector in the direction of **a**:

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = \frac{3}{\sqrt{14}} \frac{\mathbf{a}}{|\mathbf{a}|} = \frac{3}{14} \mathbf{a}$$
$$= \left\langle -\frac{3}{7}, \frac{9}{14}, \frac{3}{14} \right\rangle$$